Experimental investigations and kinematic simulation of single grit scratched surfaces considering pile-up behaviour: grinding perspective

Abstract

Scratch tests are useful techniques to gain insight into the material removal mechanism of abrasive machining processes. In most of the scratch tests, uncut chip thickness value is either constant or varies from zero to maximum. However, in abrasive machining processes, uncut chip thickness value ranges from either zero to maximum or vice versa. Moreover, regular scratch tests are conducted at very low speeds, in which either the indenter or the workpiece is stationary. Because of these limitations, the knowledge obtained from the existing scratch test results is not valid for most of the abrasive processes. Hence, in this paper, the influence of chip thickness variation, speed ratio, and depth of cut on the pile-up behaviour of AISI 1015 steel and 2017A-T4 aluminium alloy surfaces were investigated. The workpiece having the comparable thermal diffusivity value with the grit has shown a significant difference in its pile-up behaviour. Through a better understanding of chip thickness influence on pile-up ratio, a mathematical model was developed for kinematic simulations. Using the developed model, kinematic simulations were done to visualise the scratch surface topography and material pile-up by considering the grit trajectory path and chip thickness variation. Finally, simulated surfaces were compared with the experimental results to show the proposed method applicability.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hashimoto F, Yamaguchi H, Krajnik P, Wegener K, Chaudhari R, Hoffmeister H-W, Kuster F (2016) Abrasive fine-finishing technology. CIRP Ann 65:597–620. https://doi.org/10.1016/j.cirp.2016.06.003

    Article  Google Scholar 

  2. 2.

    Oliveira JFG, Silva EJ, Guo C, Hashimoto F (2009) Industrial challenges in grinding. CIRP Ann 58:663–680. https://doi.org/10.1016/j.cirp.2009.09.006

    Article  Google Scholar 

  3. 3.

    Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister H-W, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann 55:667–696. https://doi.org/10.1016/j.cirp.2006.10.003

    Article  Google Scholar 

  4. 4.

    Lautenschlaeger MP, Stephan S, Urbassek HM, Kirsch B, Aurich JC, Horsch MT, Hasse H (2017) Effects of lubrication on the friction in nanometric machining processes: a molecular dynamics approach. AMM 869:85–93. https://doi.org/10.4028/www.scientific.net/AMM.869.85

    Article  Google Scholar 

  5. 5.

    Doman DA, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49:109–116. https://doi.org/10.1016/j.ijmachtools.2008.10.002

    Article  Google Scholar 

  6. 6.

    Su C, Mi X, Sun X, Chu M (2018) Simulation study on chip formation mechanism in grinding particle reinforced Cu-matrix composites. Int J Adv Manuf Technol 99:1249–1256. https://doi.org/10.1007/s00170-018-2477-9

    Article  Google Scholar 

  7. 7.

    Chen H-Q, Wang Q-H (2018) A novel approach to simulate surface topography based on motion trajectories and feature theories of abrasive grains. Int J Adv Manuf Technol 99:1467–1480. https://doi.org/10.1007/s00170-018-2590-9

    Article  Google Scholar 

  8. 8.

    Aurich JC, Kirsch B (2012) Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP J Manuf Sci Technol 5:164–174. https://doi.org/10.1016/j.cirpj.2012.07.004

    Article  Google Scholar 

  9. 9.

    Cao Y, Guan J, Li B, Chen X, Yang J, Gan C (2013) Modeling and simulation of grinding surface topography considering wheel vibration. Int J Adv Manuf Technol 66:937–945. https://doi.org/10.1007/s00170-012-4378-7

    Article  Google Scholar 

  10. 10.

    Wang X, Yu T, Dai Y, Shi Y, Wang W (2016) Kinematics modeling and simulating of grinding surface topography considering machining parameters and vibration characteristics. Int J Adv Manuf Technol 87:2459–2470. https://doi.org/10.1007/s00170-016-8660-y

    Article  Google Scholar 

  11. 11.

    Chen X, Rowe WB, Mills B, Allanson DR (1998) Analysis and simulation of the grinding process. Part IV: effects of wheel wear. Int J Mach Tools Manuf 38:41–49. https://doi.org/10.1016/S0890-6955(97)00041-2

    Article  Google Scholar 

  12. 12.

    Liu Y, Warkentin A, Bauer R, Gong Y (2013) Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations. Precis Eng 37:758–764. https://doi.org/10.1016/j.precisioneng.2013.02.009

    Article  Google Scholar 

  13. 13.

    Chen H, Yu T, Dong J, Zhao Y, Zhao J (2018) Kinematic simulation of surface grinding process with random cBN grain model. Int J Adv Manuf Technol 100:2725–2739. https://doi.org/10.1007/s00170-018-2840-x

    Article  Google Scholar 

  14. 14.

    Yu H, Wang J, Lu Y (2016) Simulation of grinding surface roughness using the grinding wheel with an abrasive phyllotactic pattern. Int J Adv Manuf Technol 84:861–871. https://doi.org/10.1007/s00170-015-7722-x

    Google Scholar 

  15. 15.

    Jiang JL, Ge PQ, Bi WB, Zhang L, Wang DX, Zhang Y (2013) 2D/3D ground surface topography modeling considering dressing and wear effects in grinding process. Int J Mach Tools Manuf 74:29–40. https://doi.org/10.1016/j.ijmachtools.2013.07.002

    Article  Google Scholar 

  16. 16.

    Uhlmann E, Koprowski S, Weingaertner WL, Rolon DA (2016) Modelling and simulation of grinding processes with mounted points: part II of II - fast modelling method for workpiece surface prediction. Procedia CIRP 46:603–606. https://doi.org/10.1016/j.procir.2016.03.202

    Article  Google Scholar 

  17. 17.

    McDonald A, Mohamed A-MO, Warkentin A, Bauer RJ (2017) Kinematic simulation of the uncut chip thickness and surface finish using a reduced set of 3D grinding wheel measurements. Precis Eng 49:169–178. https://doi.org/10.1016/j.precisioneng.2017.02.005

    Article  Google Scholar 

  18. 18.

    Inasaki I (1996) Grinding process simulation based on the wheel topography measurement. CIRP Ann 45:347–350. https://doi.org/10.1016/S0007-8506(07)63077-7

    Article  Google Scholar 

  19. 19.

    Aurich JC, Braun O, Warnecke G, Cronjäger L (2003) Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation. CIRP Ann 52:275–280. https://doi.org/10.1016/S0007-8506(07)60583-6

    Article  Google Scholar 

  20. 20.

    Chi J, Guo J, Chen L (2016) The study on a simulation model of workpiece surface topography in external cylindrical grinding. Int J Adv Manuf Technol 82:939–950. https://doi.org/10.1007/s00170-015-7406-6

    Article  Google Scholar 

  21. 21.

    Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press, New York

    Google Scholar 

  22. 22.

    Moneim MEA, Nasser AA, Mahboud AMA (1983) Reciprocation of negative rake edges to simulate grinding with zero nominal depth of cut. Wear 84:81–85. https://doi.org/10.1016/0043-1648(83)90120-5

    Article  Google Scholar 

  23. 23.

    Graham D, Baul RM (1972) An investigation into the mode of metal removal in the grinding process. Wear 19:301–314. https://doi.org/10.1016/0043-1648(72)90122-6

    Article  Google Scholar 

  24. 24.

    Rowe WB, Chen X (1997) Characterization of the size effect in grinding and the sliced bread analogy. Int J Prod Res 35:887–899. https://doi.org/10.1080/002075497195768

    Article  MATH  Google Scholar 

  25. 25.

    K. Cheng, D. Huo (2013) Micro-cutting: fundamentals and applications/editors: Kai Cheng, Brunel University, UK, Dehong Huo, Newcastle University, UK, Wiley, Chichester, West Sussex, United Kingdom

  26. 26.

    T.T. Öpöz (2012) Investigation of material removal mechanism in grinding: a single grit approach. PhD, Huddersfield

  27. 27.

    Buttery TC, Hamed MS (1977) Some factors affecting the efficiency of individual grits in simulated grinding experiments. Wear 44:231–245. https://doi.org/10.1016/0043-1648(77)90142-9

    Article  Google Scholar 

  28. 28.

    Buttery TC, Hamed MS (1978) The generation of random surfaces representative of abrasion. J Mech Eng Sci 20:133–141. https://doi.org/10.1243/JMES_JOUR_1978_020_024_02

    Article  Google Scholar 

  29. 29.

    Kita Y, Ido M, Tuji Y (1981) The influence of the cutting speed on the mechanism of metal removal by an abrasive tool. Wear 71:55–63. https://doi.org/10.1016/0043-1648(81)90139-3

    Article  Google Scholar 

  30. 30.

    Matsuo T, Toyoura S, Oshima E, Ohbuchi Y (1989) Effect of grain shape on cutting force in superabrasive single-grit tests. CIRP Ann 38:323–326. https://doi.org/10.1016/S0007-8506(07)62714-0

    Article  Google Scholar 

  31. 31.

    Ohbuchi Y, Matsuo T (1991) Force and chip formation in single-grit orthogonal cutting with shaped CBN and diamond grains. CIRP Ann 40:327–330. https://doi.org/10.1016/S0007-8506(07)61998-2

    Article  Google Scholar 

  32. 32.

    Wang H, Subhash G, Chandra A (2001) Characteristics of single-grit rotating scratch with a conical tool on pure titanium. Wear 249:566–581. https://doi.org/10.1016/S0043-1648(01)00585-3

    Article  Google Scholar 

  33. 33.

    Klocke F, Beck T, Hoppe S, Krieg T, Müller N, Nöthe T, Raedt H-W, Sweeney K (2002) Examples of FEM application in manufacturing technology. J Mater Process Technol 120:450–457. https://doi.org/10.1016/S0924-0136(01)01210-9

    Article  Google Scholar 

  34. 34.

    Subhash G, Zhang W (2002) Investigation of the overall friction coefficient in single-pass scratch test. Wear 252:123–134. https://doi.org/10.1016/S0043-1648(01)00852-3

    Article  Google Scholar 

  35. 35.

    Brinksmeler E, Glwerzew A (2003) Chip formation mechanisms in grinding at low speeds. CIRP Ann 52:253–258. https://doi.org/10.1016/S0007-8506(07)60578-2

    Article  Google Scholar 

  36. 36.

    Barge M, Rech J, Hamdi H, Bergheau J-M (2008) Experimental study of abrasive process. Wear 264:382–388. https://doi.org/10.1016/j.wear.2006.08.046

    Article  Google Scholar 

  37. 37.

    Ghosh S, Chattopadhyay AB, Paul S (2010) Study of grinding mechanics by single grit grinding test. Int J Precision Technology 1:356. https://doi.org/10.1504/IJPTECH.2010.031663

    Article  Google Scholar 

  38. 38.

    Aurich JC, Steffes M (2011) Single grain scratch tests to determine elastic and plastic material behavior in grinding. Adv Mater Res 325:48–53. https://doi.org/10.4028/www.scientific.net/AMR.325.48

    Article  Google Scholar 

  39. 39.

    Anderson D, Warkentin A, Bauer R (2011) Experimental and numerical investigations of single abrasive-grain cutting. Int J Mach Tools Manuf 51:898–910. https://doi.org/10.1016/j.ijmachtools.2011.08.006

    Article  Google Scholar 

  40. 40.

    Öpöz TT, Chen X (2012) Experimental investigation of material removal mechanism in single grit grinding. Int J Mach Tools Manuf 63:32–40. https://doi.org/10.1016/j.ijmachtools.2012.07.010

    Article  Google Scholar 

  41. 41.

    Dai C-W, Yu T-Y, Ding W-F, Xu J-H, Yin Z, Li H (2019) Single diamond grain cutting-edges morphology effect on grinding mechanism of Inconel 718. Precis Eng 55:119–126. https://doi.org/10.1016/j.precisioneng.2018.08.017

    Article  Google Scholar 

  42. 42.

    Tian L, Fu Y, Xu J, Li H, Ding W (2015) The influence of speed on material removal mechanism in high speed grinding with single grit. Int J Mach Tools Manuf 89:192–201. https://doi.org/10.1016/j.ijmachtools.2014.11.010

    Article  Google Scholar 

  43. 43.

    Wager JG, Gu DY (1991) Influence of up-grinding and down-grinding on the contact zone. CIRP Ann 40:323–326. https://doi.org/10.1016/S0007-8506(07)61997-0

    Article  Google Scholar 

  44. 44.

    Wang S-B, Kou H-S (2006) Selections of working conditions for creep feed grinding. Part (II): workpiece temperature and critical grinding energy for burning. Int J Adv Manuf Technol 28:38–44. https://doi.org/10.1007/s00170-004-2344-8

    Article  Google Scholar 

  45. 45.

    Setti D, Kirsch B, Aurich JC (2017) An analytical method for prediction of material deformation behavior in grinding using single grit analogy. Procedia CIRP 58:263–268. https://doi.org/10.1016/j.procir.2017.03.193

    Article  Google Scholar 

  46. 46.

    Rowe WB (ed) (2014) Principles of modern grinding technology. William Andrew, Amsterdam

    Google Scholar 

  47. 47.

    http://www.matweb.com. Accessed 2 Jan 2018

  48. 48.

    Gauthier C, Schirrer R (2000) Time and temperature dependence of the scratch properties of poly(methylmethacrylate) surfaces. J Mater Sci 35:2121–2130. https://doi.org/10.1023/A:1004798019914

    Article  Google Scholar 

  49. 49.

    Qian N, Ding W, Zhu Y (2018) Comparative investigation on grindability of K4125 and Inconel718 nickel-based superalloys. Int J Adv Manuf Technol 97:1649–1661. https://doi.org/10.1007/s00170-018-1993-y

    Article  Google Scholar 

  50. 50.

    Malkin S, Guo C (2007) Thermal analysis of grinding. CIRP Ann 56:760–782. https://doi.org/10.1016/j.cirp.2007.10.005

    Article  Google Scholar 

  51. 51.

    Saljé OE, Paulmann R (1988) Relations between abrasive processes. CIRP Ann 37:641–648. https://doi.org/10.1016/S0007-8506(07)60761-6

    Article  Google Scholar 

  52. 52.

    A. Darafon (2013) Measuring and modeling of grinding wheel topography. PhD, Halifax, Nova Scotia

  53. 53.

    Saini DP (1984) A new model of local elastic deflections in grinding. J Vib Acoust 106:154. https://doi.org/10.1115/1.3269144

    Article  Google Scholar 

Download references

Funding

This work was financially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—252408385 – IRTG 2057.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dinesh Setti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Setti, D., Kirsch, B. & Aurich, J.C. Experimental investigations and kinematic simulation of single grit scratched surfaces considering pile-up behaviour: grinding perspective. Int J Adv Manuf Technol 103, 471–485 (2019). https://doi.org/10.1007/s00170-019-03522-7

Download citation

Keywords

  • Kinematic simulations
  • Scratching
  • Surface grinding
  • Minimum chip thickness
  • Single grit
  • Ploughing
  • Pile-up