Skip to main content
Log in

Numerical optimization of variable blank holder force trajectory and blank shape for twist springback reduction using sequential approximate optimization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper proposes an approach for twist springback reduction using variable blank holder force (VBHF) trajectory that the blank holder force (BHF) varies through the stroke. In addition, the blank shape is optimized. Therefore, design optimization of VBHF trajectory and blank shape for twist springback reduction is performed. Springback of U-shaped product is a simple deformation, whereas the one of S-rail-shaped product shows more complicated behavior due to twisting. As the result, compared with the springback of U-shaped product, it is difficult to evaluate the twist springback. A novel evaluation method for the twist springback is proposed, and the optimal VBHF trajectory and blank shape for the twist springback reduction are determined under several design constraints. Numerical simulation of the S-rail-shaped product is so intensive that response surface approach is valid. In particular, a sequential approximate optimization that the response surface is repeatedly constructed and optimized is used to determine the optimal VBHF and blank shape. Through numerical result, the validation of the proposed approach is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Viswanathan V, Kinsey B, Cao J (2003) Experimental implementation of neural network springback control for sheet metal forming. J Eng Mater Technol 125:141–147

    Article  Google Scholar 

  2. Chen P, Koc M, Wenner ML (2008) Experimental investigation of springback variation in forming of high strength steels. J Manuf Sci Eng 130:041006–1-041006-9

    Article  Google Scholar 

  3. Chongthairungruang B, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Springback prediction in sheet metal forming of high strength steels. Mater Des 50:253–266

    Article  Google Scholar 

  4. Komgrit L, Hamasaki H, Hino R, Yoshida F (2016) Elimination of springback of high-strength steel sheet by using additional bending with counter punch. J Mater Process Technol 229:199–206

    Article  Google Scholar 

  5. Lin ZQ, Wang WR, Chen GL (2007) A new strategy to optimize variable blank holder force towards improving the forming limits of aluminum sheet metal forming. J Mater Process Technol 183:339–346

    Article  Google Scholar 

  6. Kitayama S, Saikyo M, Kawamoto K, Yamamichi K (2015) Multi-objective optimization of blank shape for deep drawing with variable blank holder force via sequential approximate optimization. Struct Multidiscip Optim 52:1001–1012

    Article  MathSciNet  Google Scholar 

  7. Kitayama S, Koyama H, Kawamoto K, Noda T, Yamamichi K, Miyasaka T (2017) Numerical and experimental case study on simultaneous optimization of blank shape and variable blank holder force trajectory in deep drawing. Struct Multidiscip Optim 55:347–359

    Article  Google Scholar 

  8. Kitayama S, Koyama H, Kawamoto K, Miyasaka T, Yamamichi K, Noda T (2017) Optimization of blank shape and segmented variable blank holder force trajectories in deep drawing using sequential approximate optimization. Int J Adv Manuf Technol 91:1809–1821

    Article  Google Scholar 

  9. Zheng LH, Wang ZJ, Liu ZG, Song H (2018) Formability and performance of 6K21-T4 aluminum automobile panels in VPF under variable blank holder force. Int J Adv Manuf Technol 94:571–584

    Article  Google Scholar 

  10. Sunseri M, Cao J, Karafillis AP, Boyce MC (1996) Accommodation of springback error in channel forming using active binder force control: numerical simulations and experiments. J Eng Mater Technol 118:426–435

    Article  Google Scholar 

  11. Liu G, Lin Z, Xu W, Bao Y (2002) Variable blank holder force in U-shaped part forming for eliminating springback error. J Mater Process Technol 120:259–264

    Article  Google Scholar 

  12. Jakumeit J, Herdy M, Nitsche M (2005) Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm. Struct Multidiscip Optim 29:498–507

    Article  Google Scholar 

  13. Jiang C, Han X, Liu GR, Li GY (2007) The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J Mater Process Technol 182:262–267

    Article  Google Scholar 

  14. Song JH, Huh H, Kim SH (2007) Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology. J Eng Mater Technol 129:397–406

    Article  Google Scholar 

  15. Kitayama S, Huang S, Yamazaki K (2013) Optimization of variable blank holder force trajectory for springback reduction via sequential approximate optimization with radial basis function network. Struct Multidiscip Optim 47:289–300

    Article  Google Scholar 

  16. Lorenzo RD, Ingarao G, Micari F, Chinesta F (2009) A pareto-optimal design approach for simultaneous control of thinning and springback in stamping process. Int J Mater Form 2:801–804

    Article  Google Scholar 

  17. Ingarao G, Lorenzo RD, Micari F (2009) Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure. Mater Des 30:4421–4433

    Article  Google Scholar 

  18. Marretta L, Ingarao G, Lorenzo RD (2010) Design of sheet stamping operations to control springback and thinning: a multi-objective stochastic optimization approach. Int J Mech Sci 52:914–927

    Article  Google Scholar 

  19. Li H, Sun G, Li G, Gong Z, Liu D, Li Q (2011) On twist springback in advanced high-strength steels. Mater Des 32:3272–3279

    Article  Google Scholar 

  20. Tang L, Wang H, Li G (2013) Advanced high strength steel springback optimization by projection-based heuristic global search algorithm. Mater Des 43:426–437

    Article  Google Scholar 

  21. Li H (2013) Reduction of springback by intelligent sampling-based LSSVR metamodel-based optimization. Int J Mater Form 6:103–114

    Article  Google Scholar 

  22. Kishor N, Kumar DR (2002) Optimization of initial blank shape to minimize earing in deep drawing using finite element method. J Mater Process Technol 130(131):20–30

    Article  Google Scholar 

  23. Vafaeesefat A (2011) Finite element simulation for blank shape optimization in sheet metal forming. Mater Manuf Process 26:93–98

    Article  Google Scholar 

  24. Hino R, Yoshida F, Toropov VV (2006) Optimum blank design for sheet metal forming based on the interaction of high- and low-fidelity FE models. Arch Appl Mech 75(10):679–691

    Article  MATH  Google Scholar 

  25. Naceur H, Ben-Elechi S, Batoz JL, Knopf-Lenoir C (2008) Response surface methodology for the rapid design of aluminum sheet metal forming parameters. Mater Des 29:781–790

    Article  Google Scholar 

  26. Chamekh A, BenRhaiem S, Khaterchi H, BelHadjSalah H, Hambli R (2010) An optimization strategy based on a metamodel applied for the prediction of the initial blank shape in a deep drawing process. Int J Adv Manuf Technol 50:93–100

    Article  Google Scholar 

  27. Liu Y, Chen W, Ding L, Wang X (2013) Response surface methodology based on support vector regression for polygon blank shape optimization design. Int J Adv Manuf Technol 66:1397–1405

    Article  Google Scholar 

  28. Palaniswamy H, Ngaile G, Altan T (2004) Optimization of blank dimensions to reduce springback in the flexforming process. J Mater Process Technol 146:28–34

    Article  Google Scholar 

  29. Bonte MHA, van den Boogaard AH, Huetink J (2008) An optimization strategy for industrial metal forming processes. Struct Multidiscip Optim 35:571–586

    Article  Google Scholar 

  30. Kitayama S, Arakawa M, Yamazaki K (2011) Sequential approximate optimization using radial basis function network for engineering optimization. Optim Eng 12(4):535–557

    Article  MATH  Google Scholar 

  31. Kitayama S, Srirat J, Arakawa M, Yamazaki K (2011) Sequential approximate multi-objective optimization using radial basis function network. Struct Multidiscip Optim 48:501–515

    Article  MathSciNet  Google Scholar 

  32. Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling, Wiley

  33. Tozawa Y (1965) Theoretical analysis on springback of thin plate. J Jpn Soc Mech Eng 68(559):1090–1097 (in Japanese).

    Google Scholar 

  34. Panda SK, Sreenivasan N, Kuntz ML, Zhou Y (2008) Numerical simulations and experimental results of tensile test behavior of laser butt welded DP980 steels. J Eng Mater Technol 130:041003–1-041003-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kitayama.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitayama, S., Ishizuki, R., Yokoyaka, M. et al. Numerical optimization of variable blank holder force trajectory and blank shape for twist springback reduction using sequential approximate optimization. Int J Adv Manuf Technol 103, 63–75 (2019). https://doi.org/10.1007/s00170-019-03521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03521-8

Keywords

Navigation