Skip to main content
Log in

The effect of beam oscillations on the microstructure and mechanical properties of electron beam welded steel joints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The influence of beam oscillations on the microstructure and mechanical properties of low-carbon steels, subjected to electron beam welding, was investigated. Beam oscillations created a dynamic distribution of power around the stationary position of the beam resulting in the enhanced flow of heat inside the keyhole and yielded wider fusion and heat-affected zones. A reduction in the undercutting at the weld root was also achieved through beam oscillation. The weld microstructure consisted of large columnar grains in the fusion zone and equiaxed grains of varying sizes in the heat-affected zone. The variation in grain size across the weld joint was attributed to the steep temperature gradients produced during electron beam welding. High hardness was seen in the fusion and heat-affected zones due to the occurrence of martensite. Weld samples fabricated using beam oscillations showed lower microhardness compared with joints produced by stationary beam welding. This decrease in hardness arose from enhanced grain growth and additional diffusion of carbon out of the austenite lattice due to beam oscillations. Beam oscillations did not introduce any significant morphological changes to the weld microstructure, but resulted in enhanced tensile strength and lower microhardness in the weld joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang P, Chen X, Pan Q, Madigan B, Long J (2016) Laser welding dissimilar materials of aluminum to steel: an overview. Int J Adv Manuf Technol 87(9):3081–3090. https://doi.org/10.1007/s00170-016-8725-y

    Article  Google Scholar 

  2. Williams E, Lavery N (2017) Laser processing of bulk metallic glass: A review. J Mater Process Technol 247(Supplement C):73–91. https://doi.org/10.1016/j.jmatprotec.2017.03.034. http://www.sciencedirect.com/science/article/pii/S0924013617301279

    Article  Google Scholar 

  3. Verma J, Taiwade RV (2017) Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments - A review. J Manuf Process 25 (Supplement C):134–152. https://doi.org/10.1016/j.jmapro.2016.11.003. http://www.sciencedirect.com/science/article/pii/S152661251630158X

    Article  Google Scholar 

  4. David SA, DebRoy T (1992) Current issues and problems in welding science. Science 257(5069):497–502. https://doi.org/10.1126/science.257.5069.497. http://science.sciencemag.org/content/257/5069/497

    Article  Google Scholar 

  5. Jebaraj AV, Ajaykumar L, Deepak C, Aditya K (2017) Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications - a recent review. J Adv Res 8(3):183–199. https://doi.org/10.1016/j.jare.2017.01.002. http://www.sciencedirect.com/science/article/pii/S2090123217300115

    Article  Google Scholar 

  6. Chiumenti M, Cervera M, Dialami N, Wu B, Jinwei L, de Saracibar CA (2016) Numerical modeling of the electron beam welding and its experimental validation. Finite Elem Anal Des 121(Supplement C):118–133. https://doi.org/10.1016/j.finel.2016.07.003. http://www.sciencedirect.com/science/article/pii/S0168874X16301378

    Article  Google Scholar 

  7. Kaur A, Ribton C, Balachandaran W (2015) Electron beam characterisation methods and devices for welding equipment. J Mater Process Technol 221(Supplement C):225–232. https://doi.org/10.1016/j.jmatprotec.2015.02.024. http://www.sciencedirect.com/science/article/pii/S0924013615000679

    Article  Google Scholar 

  8. Wȩglowski M, Bacha S, Phillips A (2016) Electron beam welding–techniques and trends–review. Vacuum 130(Supplement C):72–92. https://doi.org/10.1016/j.vacuum.2016.05.004. http://www.sciencedirect.com/science/article/pii/S0042207X16301245

    Article  Google Scholar 

  9. International electron beam welding conference: Lectures of the 2nd IEBW conference taking place in aachen on march 26-30 (2012) vol 285, DVS Media GmbH, Dusseldorf

  10. Alali M, Todd I, Wynne B (2017) Through-thickness microstructure and mechanical properties of electron beam welded 20mm thick aisi 316l austenitic stainless steel. Mater Des 130(Supplement C):488–500. https://doi.org/10.1016/j.matdes.2017.05.080. http://www.sciencedirect.com/science/article/pii/S0264127517305610

    Article  Google Scholar 

  11. Wang Y, Fu P, Guan Y, Lu Z, Wei Y (2013) Research on modeling of heat source for electron beam welding fusion-solidific ation zone. Chin J Aeron 26(1):217– 223. https://doi.org/10.1016/j.cja.2012.12.023. http://www.sciencedirect.com/science/article/pii/S1000936112000313

    Article  Google Scholar 

  12. Ziolkowski M, Brauer H (2009) Modelling of seebeck effect in electron beam deep welding of dissimilar metals. COMPEL - Int J Comput Math Electr Electron Eng 28(1):140–153. https://doi.org/10.1108/03321640910918940

    Article  MATH  Google Scholar 

  13. Rai R, Burgardt P, Milewski JO, Lienert T, DebRoy T (2009) Heat transfer and fluid flow during electron beam welding of 21cr–6ni–9mn steel and ti–6al–4v alloy. J Phys D: Appl Phys 42(2):025503. http://stacks.iop.org/0022-3727/42/i=2/a=025503

    Article  Google Scholar 

  14. Chiumenti M, Cervera M, Dialami N, Wu B, Jinwei L, de Saracibar CA (2016) Numerical modeling of the electron beam welding and its experimental validation. Finite Elements Anal Des 121:118–133. https://doi.org/10.1016/j.finel.2016.07.003. http://www.sciencedirect.com/science/article/pii/S0168874X16301378

    Article  Google Scholar 

  15. Huang B, Chen X, Pang S, Hu R (2017) A three-dimensional model of coupling dynamics of keyhole and weld pool during electron beam welding. Int J Heat Mass Transf 115:159–173. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.010. http://www.sciencedirect.com/science/article/pii/S0017931017310608

    Article  Google Scholar 

  16. Kar J, Roy SK, Roy GG (2016) Effect of beam oscillation on electron beam welding of copper with aisi-304 stainless steel. J Mater Process Technol 233(Supplement C):174–185. https://doi.org/10.1016/j.jmatprotec.2016.03.001. http://www.sciencedirect.com/science/article/pii/S0924013616300577

    Article  Google Scholar 

  17. Babu NK, Raman SGS, Murthy CVS, Reddy GM (2007) Effect of beam oscillation on fatigue life of ti–6al–4v electron beam weldments. Mater Sci Eng: A 471(1):113–119. https://doi.org/10.1016/j.msea.2007.03.040. http://www.sciencedirect.com/science/article/pii/S0921509307005357

    Article  Google Scholar 

  18. Dinda SK, Sk MB, Roy GG, Srirangam P (2016) Microstructure and mechanical properties of electron beam welded dissimilar steel to fe–al alloy joints. Mater Sci Eng: A 677(Supplement C):182–192. https://doi.org/10.1016/j.msea.2016.09.050. http://www.sciencedirect.com/science/article/pii/S0921509316311108

    Article  Google Scholar 

  19. Kar J, Dinda SK, Roy GG, Roy SK, Srirangam P (2018) X-ray tomography study on porosity in electron beam welded dissimilar copper–304ss joints. Vacuum 149:200–206. https://doi.org/10.1016/j.vacuum.2017.12.038. http://www.sciencedirect.com/science/article/pii/S0042207X17314896

    Article  Google Scholar 

  20. Trushnikov D, Koleva E, Mladenov G, Belenkiy VY (2013) Effect of beam deflection oscillations on the weld geometry. J Mater Process Technol 213(9):1623–1634. https://doi.org/10.1016/j.jmatprotec.2013.03.028. http://www.sciencedirect.com/science/article/pii/S0924013613001209

    Article  Google Scholar 

  21. Wang L, Gao M, Zhang C, Zeng X (2016) Effect of beam oscillating pattern on weld characterization of laser welding of aa6061-t6 aluminum alloy. Mater Des 108(Supplement C):707–717. https://doi.org/10.1016/j.matdes.2016.07.053. http://www.sciencedirect.com/science/article/pii/S0264127516309534

    Article  Google Scholar 

  22. Kar J, Roy SK, Roy GG (2017) Effect of beam oscillation on microstructure and mechanical properties of aisi 316l electron beam welds. Metall and Mater Trans A 48(4):1759–1770. https://doi.org/10.1007/s11661-017-3976-2

    Article  Google Scholar 

  23. RajaKumar G, Janaki Ram GD, Koteswara Rao SR (2015) Effect of beam oscillation on borated stainless steel electron beam welds. Mater Test 57(6):489–494. https://doi.org/10.3139/120.110740

    Article  Google Scholar 

  24. Ferreño D., Carral JP, Calderón RL, Álvarez JA, Gutiérrez-Solana F (2017) Development and experimental validation of a simplified finite element methodology to simulate the response of steel beams subjected to flame straightening. Construct Build Mater 137(Supplement C):535–547. https://doi.org/10.1016/j.conbuildmat.2017.02.001. http://www.sciencedirect.com/science/article/pii/S0950061817301769

    Article  Google Scholar 

  25. Lacalle R, Álvarez J, Ferreño D, Portilla J, Ruiz E, Arroyo B, Gutiérrez-Solana F. (2013) Flame straightening application on structural steels: Effects on mechanical and fracture properties, 0. https://doi.org/10.1201/b15963-76

  26. Sun X, Choi K, Liu W, Khaleel M (2009) Predicting failure modes and ductility of dual phase steels using plastic strain localization. Int J Plast 25(10):1888–1909. https://doi.org/10.1016/j.ijplas.2008.12.012. http://www.sciencedirect.com/science/article/pii/S0749641908001897

    Article  Google Scholar 

  27. Ramazani A, Mukherjee K, Schwedt A, Goravanchi P, Prahl U, Bleck W (2013) Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int J Plast 43:128–152. https://doi.org/10.1016/j.ijplas.2012.11.003. http://www.sciencedirect.com/science/article/pii/S0749641912001684

    Article  Google Scholar 

  28. Tasan C, Hoefnagels J, Diehl M, Yan D, Roters F, Raabe D (2014) Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. Int J Plast 63:198–210. deformation Tensors in Material Modeling in Honor of Prof. Otto T. Bruhns. https://doi.org/10.1016/j.ijplas.2014.06.004. http://www.sciencedirect.com/science/article/pii/S0749641914001260

    Article  Google Scholar 

  29. Minami H, Nakayama K, Morikawa T, Higashida K, Toji Y, Hasegawa K (2011) Effect of tempering conditions on inhomogeneous deformation behavior of ferrite-martensite dual-phase steels. Tetsu-to-Hagane 97(9):493–500. https://doi.org/10.2355/tetsutohagane.97.493

    Article  Google Scholar 

  30. Hasegawa K, Toji Y, Minami H, Ikeda H, Morikawa T, Higashida K (2012) Effect of martensite fraction on tensile properties of dual-phase steels. Tetsu-to-Hagane 98(6):320–327. https://doi.org/10.2355/tetsutohagane.98.320

    Article  Google Scholar 

  31. Tasan C, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M, Tsuzaki K, Raabe D (2015) An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res 45(1):391–431. https://doi.org/10.1146/annurev-matsci-070214-021103

    Article  Google Scholar 

  32. Zheng C, Raabe D (2013) Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model. Acta Mater 61(14):5504–5517. https://doi.org/10.1016/j.actamat.2013.05.040. http://www.sciencedirect.com/science/article/pii/S1359645413004187

    Article  Google Scholar 

  33. EN-5173:2010+A1:2011 (2010) Destructive tests on welds in metallic materials. bend tests, European committee for Standardization

  34. Han R, Lu S, Dong W, Li D, Li Y (2015) The morphological evolution of the axial structure and the curved columnar grain in the weld. J Cryst Growth 431(Supplement C):49–59. https://doi.org/10.1016/j.jcrysgro.2015.09.001. http://www.sciencedirect.com/science/article/pii/S0022024815005473

    Article  Google Scholar 

  35. Lienert T, Siewert T, Babu S, Acoff V (2011) ASM handbook, vol 6A. ASM International, Ohio

    Google Scholar 

  36. Komerla K, Naumov A, Mertin C, Prahl U, Bleck W (2018) Investigation of microstructure and mechanical properties of friction stir welded aa6016-t4 and dc04 alloy joints. Int J Adv Manuf Technol 94 (9):4209–4219. https://doi.org/10.1007/s00170-017-1022-6

    Article  Google Scholar 

  37. Sadowski AJ, Rotter JM, Stafford PJ, Reinke T, Ummenhofer T (2017) On the gradient of the yield plateau in structural carbon steels. J Construct Steel Res 130(Supplement C):120–130. https://doi.org/10.1016/j.jcsr.2016.11.024. http://www.sciencedirect.com/science/article/pii/S0143974X16304771

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for their continued support of our research in the Collaborative Research Centre SFB1120 ‘Precision Melt Engineering’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Komerla.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 11
figure 11

Tensile test setup depicting the load cell, holding grips, tensile specimen and the video extensometer used to measure the elongation; A high-speed camera was also employed to study the nucleation and growth of Lüders band

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komerla, K., Gach, S., Vossel, T. et al. The effect of beam oscillations on the microstructure and mechanical properties of electron beam welded steel joints. Int J Adv Manuf Technol 102, 2919–2931 (2019). https://doi.org/10.1007/s00170-019-03355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03355-4

Keywords

Navigation