Skip to main content

Supervised process monitoring and fault diagnosis based on machine learning methods

Abstract

Data-driven techniques have been receiving considerable attention in the industrial process monitoring field due to their major advantages of easy implementation and less requirement for the prior knowledge and process mechanism. Principal component analysis (PCA) method is known as a popular method for monitoring and fault detection in industrial systems but as it is basically a linear method. However, most practical systems are nonlinear. To make the extension to nonlinear systems, kernel PCA (KPCA) method has been proposed for process modeling and monitoring. We present in this paper an online reduced rank optimized KPCA (RR-KPCA) technique for fault detection in order to extend the advantages of the KPCA models to online processes. Following the fault detection, the identification of the variables correlated to the fault occurred is of great importance. For this purpose, it is proposed to extend the approaches of localization by partial PCA and by elimination in the linear case to the nonlinear case, by exploiting the solution of reduction of the dimension of the kernel matrix in the feature space. The partial RR-KPCA and the elimination sensor identification (ESI-RRKPCA) are generated based on the static RR-KPCA and the online RR-KPCA methods. The idea of these approaches is to generate partial RR-KPCA models with reduced sets of variables. In other words, their goal is to generate indices of fault detection sensitive to certain faults and insensitive to others. The proposed fault isolation methods are applied for monitoring an air quality monitoring network (AIRLOR) data.

This is a preview of subscription content, access via your institution.

References

  1. Jaffel I, Taouali O, Elaissi I, Messaoud H (2014) A new online fault detection method based on PCA technique. IMA J Math Control Inf 31(4):487–499

    Article  MathSciNet  MATH  Google Scholar 

  2. Tharrault Y, Mourot G, Ragot J, Maquin D (2008) Fault detection and isolation with robust principal component analysis. Int J Appl Math Comput Sci 18(4):429–442

    Article  MATH  Google Scholar 

  3. Mika S, Schölkopf B, Smola AJ, Müller KR, Scholz M, Rätsch G (1998, December) Kernel PCA and de-noising in feature spaces. In: NIPS, vol 11, pp 536–542

    Google Scholar 

  4. Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  5. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404

    Article  MathSciNet  MATH  Google Scholar 

  6. Fazai R, Taouali O, Harkat MF, Bouguila N (2016) A new fault detection method for nonlinear process monitoring. Int J Adv Manuf Technol 87(9–12):3425–3436

    Article  Google Scholar 

  7. Honeine P (2012) Online kernel principal component analysis: a reduced-order model. IEEE Trans Pattern Anal Mach Intell 34(9):1814–1826

    Article  Google Scholar 

  8. Kazor K, Holloway RW, Cath TY, Hering AS (2016) Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility. Stoch Env Res Risk A 30(5):1527–1544

    Article  Google Scholar 

  9. Lee JM, Yoo C, Lee IB (2004) Statistical process monitoring with independent component analysis. J Process Control 14(5):467–485

    Article  Google Scholar 

  10. Aizerman M, Braverman E, Rozonoer L (1964) Theoretical foundations of the potential function method in pattern recognition learning. Autom Remote Control 25:821–837

    MATH  Google Scholar 

  11. Chouaib C, Mohamed-Faouzi H, Messaoud D (2015) New adaptive kernel principal component analysis for nonlinear dynamic process monitoring. Appl Math Inf Sci 9(4):1833–1845

    Google Scholar 

  12. Taouali O, Elaissi I, Messaoud H (2015) Dimensionality reduction of RKHS model parameters. ISA Trans 57:205–210

    Article  Google Scholar 

  13. Taouali O, Jaffel I, Lahdhiri H, Harkat MF, Messaoud H (2016) New fault detection method based on reduced kernel principal component analysis (RKPCA). Int J Adv Manuf Technol 85(5–8):1547–1552

    Article  Google Scholar 

  14. Taouali O, Elaissi I, Messaoud H (2012) Online identification of nonlinear system using reduced kernel principal component analysis. Neural Comput & Applic 21(1):161–169

    Article  Google Scholar 

  15. Ding C (2004) K -means clustering via principal component analysis, in the 21st Int Conf Mach Learn. Banff, Canada

    Google Scholar 

  16. Dhillon IS (2004) Kernel k-means, spectral clustering and normalized cuts. Compute 78712:551–556

    Google Scholar 

  17. Jaffel I, Taouali O, Harkat MF, Messaoud H (2016) Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring. ISA Trans 64:184–192

    Article  Google Scholar 

  18. Fezaia R, Mansourib M, Taoualia O, Harkatc MF, Bouguilaa N (2017) Online reduced kernel principal component analysis for process monitoring. J Process Control 61:1–11

    Article  Google Scholar 

  19. Gertler J, McAvoy T (1997) Principal component analysis and parity relations – a strong duality. IFAC Conference SAFEPROCESS, Hull, UK, pp. 837–842

  20. Huang Y, Gertler J (1999) Fault isolation by partial PCA and partial NLPCA.. IFAC’99, 14th triennial world congress. P. R. China, Beijing, pp 545–550

    Google Scholar 

  21. Said M, Fazai R, Adellafou KB, Taouali O (2018) Decentralized fault detection and isolation using bond graph and PCA methods. Int J Adv Manuf Technol 99:1–13. https://doi.org/10.1007/s00170-018-2526-4

    Article  Google Scholar 

  22. Downs JJ, Vogel EF (1993) A plant-wide industrial process control problem. Comput Chem Eng 17:245–255

    Article  Google Scholar 

  23. Lyman PR, Georgakis C (1995) Plant-wide control of the Tennessee Eastmanproblem. Comput Chem Eng 19:321–331. https://doi.org/10.1016/0098-1354(94)00057-U

    Article  Google Scholar 

  24. Zhao Y, Xiao L, Wen J, Lu Y, Wang S (2014) A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers. HVAC&R RESEARCH 20:798–809. https://doi.org/10.1080/10789669.2014.938006

    Article  Google Scholar 

  25. Zhao Y, Wang S, Xiao F (2013) Pattern recognition-based chillers fault detection method using support vector data description (SVDD). Appl Energy 112:1041–1048

    Article  Google Scholar 

  26. Chetouani Y (2008) A neural network approach for the real-time detection of faults. Stoch Env Res Risk A 22(3):339–349

    Article  MathSciNet  MATH  Google Scholar 

  27. Dong D, McAvoy TJ (1996) Nonlinear principal component analysis based on principal curves and neural networks. Comput Chem Eng 20(1):65–78

    Article  Google Scholar 

  28. Patan K, Parisini T (2005) Identication of neural dynamic models for fault detection and isolation: the case of a real sugar evaporation process. J Process Control 15:67–79

    Article  Google Scholar 

  29. Cristóvão RO, Pinto VMS, Gonçalves A, Martins RJE, Loureiro JM, Boaventura RAR (2016) Fish canning industry wastewater variability assessment using multivariate statistical methods. Process Saf Environ Prot 102:263–276

    Article  Google Scholar 

  30. Li G, Qin SJ, Zhou D (2010) Geometric properties of partial least squares for process monitoring. Automatica 46(1):204–210

    Article  MathSciNet  MATH  Google Scholar 

  31. Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H (2003) Monitoring independent components for fault detection. AICHE J 49(4):969–976

    Article  Google Scholar 

  32. Harrou F, Kadri F, Khadraoui S, Sun Y (2016) Ozone measurements monitoring using data-based approach. Process Saf Environ Prot 100:220–231

    Article  Google Scholar 

  33. Madakyaru M, Harrou F, Sun Y (2017) Improved data-based fault detection strategy and application to distillation columns. Process Saf Environ Prot 107:22–34

    Article  Google Scholar 

  34. Cai L, Tian X (2014) A new fault detection method for non-Gaussian process based on robust independent component analysis. Process Saf Environ Prot 92(6):645–658

    Article  Google Scholar 

  35. Choi S, Morris J, Lee I (2008) Nonlinear multiscale modelling for fault detection and identification. Chem Eng Sci 63(8):2252–2266

    Article  Google Scholar 

  36. Cho JH, Lee JM, Choi SW, Lee D, Lee IB (2005) Fault identification for process monitoring using kernel principal component analysis. Chem Eng Sci 60(1):279–288

    Article  Google Scholar 

  37. Kallas M, Mourot G, Maquin D, Ragot J (2014) Diagnosis of nonlinear systems using kernel principal component analysis. In Journal of Physics: Conference Series (Vol. 570, No. 7, p. 072004). IOP Publishing

  38. Sheriff MZ, Mansouric M, Nazmul Karima M, Nounouc H, Nounou M (2017) Fault detection using multiscale PCA-based moving window GLRT. J Process Control 54:47–64

    Article  Google Scholar 

  39. Zhang Y, Ma C (2011) Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chem Eng Sci 66(1):64–72

    Article  Google Scholar 

  40. Jicong Fan S, Qin J, Wang Y (2014) Online monitoring of nonlinear multivariate industrial processes using filtering KICA–PCA. Control Eng Pract 22(2014):205–216

    Google Scholar 

  41. Zhang Y (2009) Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem Eng Sci 64(5):801–811

    Article  Google Scholar 

  42. Choi S, Lee I (2004) Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem Eng Sci 59(24):5897–5908

    Article  Google Scholar 

  43. Zhang N, Tian X, Cai L, Deng X (2015) Process fault detection based on dynamic kernel slow feature analysis. Comput Electr Eng 41:9–17

    Article  Google Scholar 

  44. Navi M, Meskin N, Davoodi M (2018) Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA. J Process Control 64:37–48

    Article  Google Scholar 

  45. Liu X, Kruger U, Littler T, Xie L, Wang S (2009) Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemom Intell Lab Syst 96(2):132–143

    Article  Google Scholar 

  46. Li H, Zhang D (2013) Stochastic representation and dimension reduction for non-Gaussian random fields: review and reflection. Stoch Env Res Risk A 27(7):1621–1635

    Article  Google Scholar 

  47. Vapnik V (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  Google Scholar 

  48. Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philosophical transactions of the royal society of London. Series A, containing papers of a mathematical or physical character 209:415–446

    MATH  Google Scholar 

  49. Jaffel I, Taouali O, Harkat MF, Messaoud H (2016) Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring. Int J Adv Manuf Technol 88:3265(1–15). https://doi.org/10.1007/s00170-016-8987-4

  50. Zhang Y, Li S, Teng Y (2012) Dynamic processes monitoring using recursive kernel principal component analysis. Chem Eng Sci 72:78–86

    Article  Google Scholar 

  51. Lahdhiri H, Taouali O, Elaissi I, Jaffel I, Harakat MF, Messaoud H (2017) A new fault detection index based on Mahalanobis distance and kernel method. Int J Adv Manuf Technol 91: 2799:1–11. https://doi.org/10.1007/s00170-016-9887-3

  52. Nomikos P, MacGregor JF (1995) Multivariate SPC charts for monitoring batch processes. Technometrics 37(1):41–59

    Article  MATH  Google Scholar 

  53. Choi SW, Lee C, Lee JM, Park JH, Lee IB (2005) Fault detection and identification of nonlinear processes based on kernel PCA. Chemom Intell Lab Syst 75(1):55–67

    Article  Google Scholar 

  54. Lee JM, Yoo C, Choi SW, Vanrolleghem PA, Lee IB (2004) Nonlinear process monitoring using kernel principal component analysis. Chem Eng Sci 59(1):223–234

    Article  Google Scholar 

  55. Lahdhiri H, Elaissi I, Taouali O, Harakat MF, Messaoud H (2017b) Nonlinear process monitoring based on new reduced rank-KPCA method. Stoch Env Res Risk A 32(6):1833–1848

    Article  Google Scholar 

  56. Lahdhiri H, Ben Abdellafou K, Taouali O, Mansouri M, Korbaa O (2018) New online kernel method with the Tabu search algorithm for process monitoring. Trans Inst Meas Control:1–12. https://doi.org/10.1177/0142331218807271

  57. Stork CL, Veltkamp DJ, Kowalski BR (1997) Identification of multiple sensor disturbances during process monitoring. Anal Chem 69(24):5031–5036

    Article  Google Scholar 

  58. Harkat MF, Mourot G, Ragot J (2006) An improved PCA scheme for sensor FDI: application to an air quality monitoring network. J Process Control 16(6):625–634

    Article  Google Scholar 

  59. Harkat MF, Tharrault Y, Mourot G, Ragot J (2010) Multiple sensor fault detection and isolation of an air quality monitoring network using RBF-NLPCA model. Int J Adapt Innov Syst 1(3–4):267–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okba Taouali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahdhiri, H., Said, M., Abdellafou, K.B. et al. Supervised process monitoring and fault diagnosis based on machine learning methods. Int J Adv Manuf Technol 102, 2321–2337 (2019). https://doi.org/10.1007/s00170-019-03306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03306-z

Keywords