Skip to main content

The influence of rolling mill process parameters on roll thermal fatigue


This study analyzes the impact of operational parameters of hot rolling mill in the degradation process of a roll surface by thermal fatigue. A methodology was developed to determine a coefficient that could identify when operational parameters become crucial to initiate this degradation process. This new coefficient, named the surface damage coefficient (κ), is correlated with the calculated plastic strain, allowing inclusion in a model to predict the roll life. Experiments were conducted in three industrial rolling mills, and the results showed that for a κ value above 375, it is possible to identify failure by thermal fatigue, while values below this limit indicate that other damage mechanisms predominate.

This is a preview of subscription content, access via your institution.


  1. Spuzic S, Strafford KN, Subramanian C, Savage G (1994) Wear of hot rolling mill rolls: an overview. Wear 176:261–271

    Article  Google Scholar 

  2. Wright B (2014) Thermal behavior of work rolls in the hot mill rolling process. Ph.D. Thesis. The University of Swansea, United Kingdom

  3. Benasciutti D, Brusa E, Bazzaro G (2010) Finite elements prediction of thermal stresses in work roll of hot rolling Mills. Procedia Eng 2:707–716

    Article  Google Scholar 

  4. Venter R, Abd-Rabbo A (1980) Modelling of the rolling process I—inhomogeneous deformation model. Int J Mech Sci 22:83–92

    Article  Google Scholar 

  5. Devadas C (1989) The Prediction of the Evolution of Microstructure During Hot Rolling of Steel Strip. Ph.D. Thesis. The University of British Columbia, Vancouver Canada

  6. Park J Π, Kim CK, Lee S (2003) Evaluation of thermal fatigue properties of hss roll materials. metal konference, czech republic

  7. Persson A, Hogmark S, Bergström J (2004) Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int J Fatigue 26:1095–1107

    Article  Google Scholar 

  8. Le Roux S, Medjedoub F, Dour G, RÉzaÏ-Aria F (2013) Role of heat-flux density and mechanical loading on the microscopic heat-checking of high temperature tool steel under thermal fatigue experiments. Int J Fatigue 51:15–25

    Article  Google Scholar 

  9. Stevens PG, Ivens KP, Harper P (1971) Increasing work-roll life by improved roll-cooling practice. J Iron Steel Inst 1–11

  10. Tseng AA (1984) A numerical heat transfer analysis of strip rolling. J Heat Transf 106:512–517

    Article  Google Scholar 

  11. Ye X (1990) Thermal crown development in hot strip mill work rolls and the role of spray cooling. Master Dissertation. The University of British Columbia, Vancouver Canada

  12. Ryu JH, Kwon O, Lee PJ, Kim YM (1992) Evaluation of the finishing roll surface deterioration at hot strip mill. ISIJ Int 32(11):1221–1223

    Article  Google Scholar 

  13. Serajzadeh S (2008) Effects of rolling parameters on work-roll temperature distribution in the hot rolling of steels. Int J Adv Manuf Technol 35:859–866

    Article  Google Scholar 

  14. Maccagno TM, Jonas JJ, Yue S, Mccrady BJ, Slobodian R, Deeks D (1996) Determination of recrystallization stop temperature from rolling mill logs and comparison with laboratory simulation results. ISIJ Int 34:917–922

    Article  Google Scholar 

  15. Sekimoto Y, Tanaka M, Sawada R, Koga M (1977) Effects of rolling condition on the surface temperature of work roll in hot-strip mill. South East Asia Iron & Steel Institute, Shah Alam, pp 48–57

    Google Scholar 

  16. Jin DQ, Hernandez VH, Samarasekera IV (1996) Integrated process model for the hot rolling of plain carbon steel. Proceedings of the Second International Conference Modeling of Metal Rolling Processes, London, UK, December, (36–58)

  17. Serajzadeh S, Mucciardi F (2003) Modeling the work-roll temperature variation at unsteady state condition. Model Simul Mater Sci Eng 11:179–194

    Article  Google Scholar 

  18. Krzyzanowski M, Beynon JH (2016) Interfacial heat transfer during hot metal forming operations assuming scale failure effects. J Mater Sci Technol 32:407–417

  19. Maim S, Norström LA (1979) Material-related model for thermal fatigue applied to tool steels in hot-work applications. J Met Sci 13:544–550

  20. ASM Metals Handbook Volume 19 – Fatigue and fracture, 1996

  21. Halford GR (1986) Low-cycle thermal fatigue. NASA Technical Memorandum 87225. Lewis Research Center, Cleveland Ohio

    Google Scholar 

  22. Li G, Xiangzhi L, Wu J (1998) Study of the thermal fatigue crack initial life of h13 and h21 steels. J Mater Process Technol 74:23–26

    Article  Google Scholar 

  23. Lima LG, GonÇalves A, Braga APV, Boccalini M, Souza RM (2016) Coupled experimental-numerical analysis of Wear in hot-rolling Mills. 10th international tooling conference

  24. Juran JM, Gryna FM (1951) Juran’s quality control handbook, Fourth edn. McGraw-Hill Book Company

  25. Lima LG (2018) Experimental analysis and numerical modelling of the influence of the oxidation on the thermal fatigue of hot rolling rolls. Maters dissertation. University of São Paulo, Brazil

  26. Tseng AA, Lin FH, Gunderia AS, Ni DS (1989) Roll cooling and its relationship to roll life. Metall Trans A 20A:2305–2320

    Article  Google Scholar 

  27. Tseng AA (1999) Thermal modeling of roll and strip interface in rolling processes: part 1- review. Journal of Numerical Heat Transfer, Part A: Applications 35:115–133

  28. Roberts WL (1983) Hot rolling of steel. Manuf Eng Mater Process 10:779–783

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Felipe Weidlich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weidlich, F., Braga, A.P.V., da Silva Lima, L.G.D.B. et al. The influence of rolling mill process parameters on roll thermal fatigue. Int J Adv Manuf Technol 102, 2159–2171 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Thermal fatigue
  • Rolling mill rolls
  • Rolling parameters