Advertisement

Deburring of complex-shaped drilling intersections: a numerical method for modelling the tool path

  • Klaus Schützer
  • Eberhard Abele
  • Adrian MeinhardEmail author
  • Julia Donnelly
ORIGINAL ARTICLE
  • 117 Downloads

Abstract

When drilling holes, burrs are created in particular on the exit surface. Existing deburring tools and methods enable the deburring of plane exit surfaces or slightly curved cross-drilled holes. However, these tools do not meet practical requirements for deburring in the machining industry where component geometries are often complex. This paper presents a numerical method, which enables deburring of complex-shaped drilling intersections with ball-end cutters. First, the particular intersection is analysed as it defines the maximum tool diameter of the ball-end cutter. Subsequently, a three-axis tool path for ball-end cutters is generated to correlate with the intersection geometry thus enabling constant chamfering and avoiding tool collisions. The model is verified by an experiment using the material AlSi7Mg and measuring secondary burr heights and chamfer widths. Subsequently, the functionality of the model for further geometry variants is investigated.

Keywords

Deburring Ball-end cutter Tool path generation Freeform surface and complex intersection Modelling and algorithm Quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are responsible for the content of this publication. The authors are also grateful to the anonymous reviewers for their constructive criticism which served to improve this paper.

Funding information

This research and development project is funded by the German Research Foundation (DFG AB 133/94-1).

References

  1. 1.
    Gillespie LK, Blotter PT (1976) The formation and properties of machining burrs, J Eng Ind Trans ASME Feb:66–74Google Scholar
  2. 2.
    Gillespie LK, Albright RK, Neal BJ (1976) Burrs produced by end milling, Bendix, Kansas City Division, BDX6131503Google Scholar
  3. 3.
    Dornfeld DA, Kim JS, Dechow H, Hewson J, Chen LJ (1999) Drilling burr formation in titanium alloy, Ti-6Al-4V. Ann CIRP 48(1):73–76CrossRefGoogle Scholar
  4. 4.
    Dornfeld DA (2004) Strategies for preventing and minimizing burr formation, CIRP HPC Conference, AachenGoogle Scholar
  5. 5.
    Min S, Kim J, Dornfeld DA (2001) Development of a drilling burr control chart for low alloy steel, AISI4118. J Mater Process Technol 113:4–9CrossRefGoogle Scholar
  6. 6.
    Aurich JC, Dornfeld DA, Arrazola PJ, Franke V, Leitz L, Min S (2009) Burrs–analysis, control and removal. CIRP Ann Manuf Technol 58(2):519–542CrossRefGoogle Scholar
  7. 7.
    Beier H-M, Nothnagel R (2015) Praxisbuch Entgrattechnik – Wegweiser zur Gratminimierung und Gratbeseitugung für Konstruktion und Fertigung, 2nd edn. Hanser, MünchenCrossRefGoogle Scholar
  8. 8.
    Aurich JC (2006) SpanSauber – Ergebnisbericht der Untersuchung zur Beherrschung der Sauberkeit von zerspanend hergestellten Bauteilen, Lehrstuhl für Fertigungstechnik und Betriebsorganisation. Technische Universität Kaiserslautern, KaiserslauternGoogle Scholar
  9. 9.
    Gillespie LK (1979) Deburring precision miniature parts. Precis Eng 1(4):189–198CrossRefGoogle Scholar
  10. 10.
    Lee UL, Ko SL (2008) Development of deburring tool for burrs at intersecting holes. J Mater Process Technol 201:454–459CrossRefGoogle Scholar
  11. 11.
    Beier H-M, Nothnagel R (2005) Hochgeschwindigkeitsentgraten, wt Werkstattstechnik online 95:821–827Google Scholar
  12. 12.
    Kim KH, Park NJ (2005) A new deburring tool for intersecting holes. Proc Inst Mech Eng B J Eng Manuf 219:865–870CrossRefGoogle Scholar
  13. 13.
    Cho C-H, Kim K-H (2010) Product development with TRIZ: design evolution of deburring tools for intersecting holes. J Mech Sci Technol 24:169–173CrossRefGoogle Scholar
  14. 14.
    Cho C-H, Chae S-W, Kim K-H (2014) Search for a new design of deburring tools for intersecting holes with TRIZ. Int J Manuf Technol 70:2221–2231CrossRefGoogle Scholar
  15. 15.
    Ton TP, Park HY, Ko SL (2011) Experimental analysis of deburring process on inclined exit surface by new deburring tool. CIRP Ann Manuf Technol 60:129–132CrossRefGoogle Scholar
  16. 16.
    Avila MC (2004) Deburring of cross-drilled hole intersections by mechanized cutting, LMA. Annual Reports, pp 10–20Google Scholar
  17. 17.
    Güth S, Abele E (2013) Automatisiertes Entgraten von Kreuzbohrungen–Werkzeugbenchmark, Werkstatt – Betrieb, WB10:74–78Google Scholar
  18. 18.
    Pischan M (2013) Deburring of cross holes in titanium using industrial robots, WGP congress. Adv Mater Res 769:147–154CrossRefGoogle Scholar
  19. 19.
    Schützer K, Abele E, Güth S (2015) Simulation-based deburring tool and process development. CIRP Ann Manuf Technol 64:357–360CrossRefGoogle Scholar
  20. 20.
    Sato T, Sato Y, Maekawa T (2016) Tool path generation for chamfering drill holes of a pipe with constant width. Comput Aided Des 78:26–35CrossRefGoogle Scholar
  21. 21.
    Abele E, Schützer K, Güth S, Meinhard A (2018) Deburring of cross-drilled holes with ball-end cutters – modeling the tool path. Prod Eng 12:25–33CrossRefGoogle Scholar
  22. 22.
    Yong T, Narayanaswami R (2003) A parametric interpolator with confined chord error, acceleration and deceleration for NC machining. Comput Aided Des 35:1249–1259CrossRefGoogle Scholar
  23. 23.
    Helleno AL, Schützer K (2006) Investigation of tool path interpolation on the manufacturing of die and molds with HSC technology. J Mater Process Technol 179:178–184CrossRefGoogle Scholar
  24. 24.
    Schützer K, Stroh C, Schulz H (2010) C-space based approach for the calculation of toolpaths for freeform surfaces in B-spline description. CIRP Ann Manuf Technol 59:421–424CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Klaus Schützer
    • 1
  • Eberhard Abele
    • 2
  • Adrian Meinhard
    • 2
    Email author
  • Julia Donnelly
    • 2
  1. 1.Laboratory for Computer Integrated Design and ManufacturingUniversidade Metodista de PiracicabaPiracicabaBrazil
  2. 2.Institute of Production Management, Technology and Machine Tools (PTW)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations