Advertisement

Study on the effects of abrasive particle shape on the cutting performance of Ti-6Al-4V materials based on the SPH method

  • Long Feng
  • G. R. Liu
  • Zengliang LiEmail author
  • Xiangwei Dong
  • Mingchao Du
ORIGINAL ARTICLE
  • 71 Downloads

Abstract

A numerical model for simulating the process of cutting a titanium alloy (Ti-6Al-4V, TC4) with a waterjet containing abrasive particles is developed using smoothed particle hydrodynamics (SPH). In our SPH cutting model, the water carrying the abrasive particles is modeled as a weakly compressible viscous fluid, and the abrasive particles are modeled as rigid bodies with specific shapes. The metallic target, i.e., the titanium alloy, is modeled as an elastic-plastic material. The interactions among the fluid, abrasive particles, and metallic target are modeled using particles governed by the Navier-Stokes (NS) equations. A rigorous study is then conducted to investigate the effects of abrasive particles with different shapes on cutting performance. Our findings suggest the following: the simulated results are consistent with the experimental data, the abrasive particle shape is one of the most important factors affecting cutting efficiency, and particle shape also affects cutting trajectory. Our SPH cutting model can be used to further our understanding of the mechanisms underlying abrasive waterjet cutting. The cutting model also provides a computational tool for optimizing cutting efficiency.

Keywords

Smoothed particle hydrodynamics (SPH) Abrasive waterjet (AWJ) Abrasive particles Cutting efficiency Titanium alloy Ti-6Al-4V 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N, Srinath Reddy, Tirumala, D., Gajjela, R., Das, R (2018) ANN and RSM approach for modeling and multi objective optimization of abrasive water jet machining process. Decision Science Letters 7(4):535–548Google Scholar
  2. 2.
    Dong XW, Liu GR, Li Z, Zeng W (2016) A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles. Tribol Int 95:267–278CrossRefGoogle Scholar
  3. 3.
    Ariely S, Khentov A (2006) Erosion corrosion of pump impeller of cyclic cooling water system. Eng Fail Anal 13(6):925–932CrossRefGoogle Scholar
  4. 4.
    Chen Q, Li DY (2003) Computer simulation of solid particle erosion. Wear 254(3–4):203–210CrossRefGoogle Scholar
  5. 5.
    Tewari US, Harsha AP, Häger AM, Friedrich K (2003) Solid particle erosion of carbon fibre– and glass fibre–epoxy composites. Compos Sci Technol 63(3–4):549–557CrossRefGoogle Scholar
  6. 6.
    Maniadaki K, Kestis T, Bilalis N, Antoniadis A (2007) A finite element-based model for pure waterjet process simulation. Int J Adv Manuf Technol 31(9–10):933–940CrossRefGoogle Scholar
  7. 7.
    Ma L, Bao R, Guo Y (2008) Waterjet penetration simulation by hybrid code of SPH and FEA. Int J Impact Eng 35(9):1035–1042CrossRefGoogle Scholar
  8. 8.
    Jianming W, Na G, Wenjun G (2010) Abrasive waterjet machining simulation by SPH method. Int J Adv Manuf Technol 50(1–4):227–234CrossRefGoogle Scholar
  9. 9.
    Wenjun G, Jianming W, Na G (2011) Numerical simulation for abrasive water jet machining based on ALE algorithm. Int J Adv Manuf Technol 53(1–4):247–253CrossRefGoogle Scholar
  10. 10.
    Vikram G, Babu NR (2002) Modeling and analysis of abrasive water jet cut surface topography. Int J Mach Tools Manuf 42(12):1345–1354CrossRefGoogle Scholar
  11. 11.
    Çaydaş U, Hascalık A (2008) A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J Mater Process Technol 202(1–3):574–582CrossRefGoogle Scholar
  12. 12.
    Wang J (2003) Abrasive waterjet machining of engineering materials. Trans Tech Publications Ltd., SwitzerlandGoogle Scholar
  13. 13.
    Liu H, Wang J, Kelson N et al (2004) A study of abrasive waterjet characteristics by CFD simulation. J Mater Process Technol 153:488–493CrossRefGoogle Scholar
  14. 14.
    Wang J, Guo DM (2002) A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. J Mater Process Technol 121(2–3):390–394CrossRefGoogle Scholar
  15. 15.
    Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean Eng 55:136–147CrossRefGoogle Scholar
  16. 16.
    Liu GR, Liu M B (2003) Smoothed particle hydrodynamics: a meshfree particle method. World ScientificGoogle Scholar
  17. 17.
    Jiang H, Liu Z, Gao K (2017) Numerical simulation on rock fragmentation by discontinuous water-jet using coupled SPH/FEA method. Powder Technol 312:248–259CrossRefGoogle Scholar
  18. 18.
    Wenjun WANG, Jiaming GAO, Na GONG (2010) Abrasive waterjet machining simulation by coupling smoothed particle hydrodynamics/finite element method. Chin J Mech Eng 23(5):1Google Scholar
  19. 19.
    Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32(7):1095–1112CrossRefGoogle Scholar
  20. 20.
    Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266(7–8):613–620CrossRefGoogle Scholar
  21. 21.
    Babu MK, Chetty OK (2006) A study on the use of single mesh size abrasives in abrasive waterjet machining. Int J Adv Manuf Technol 29(5–6):532–540CrossRefGoogle Scholar
  22. 22.
    Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Meth Eng 17(1):25–76MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shyue KM (2001) A fluid-mixture type algorithm for compressible multicomponent flow with Mie–Grüneisen equation of state. J Comput Phys 171(2):678–707MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Johnson FR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRefGoogle Scholar
  25. 25.
    Lin YC, Chen XM (2010) A combined Johnson–Cook and Zerilli–Armstrong model for hot compressed typical high-strength alloy steel. Comput Mater Sci 49(3):628–633CrossRefGoogle Scholar
  26. 26.
    Ning J, Nguyen V, Huang Y, Hartwig KT, and Liang SY (2018) Inverse determination of Johnson–Cook model constants of ultra- fine-grained titanium based on chip formation model and iterative gradient search. Int J Adv Manuf Technol, 99(5-8):1131–1140Google Scholar
  27. 27.
    Vignjevic R, De Vuyst T, Campbell JC et al (2006) A frictionless contact algorithm for meshless methods. Comput Model Eng Sci 13(1):35MathSciNetzbMATHGoogle Scholar
  28. 28.
    Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30(1):543–574CrossRefGoogle Scholar
  29. 29.
    Van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1(3):173–185CrossRefGoogle Scholar
  30. 30.
    Li H, Wang J (2015) An experimental study of abrasive waterjet machining of Ti-6Al-4V. Int J Adv Manuf Technol 81(1–4):361–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Long Feng
    • 1
    • 2
  • G. R. Liu
    • 2
  • Zengliang Li
    • 1
    Email author
  • Xiangwei Dong
    • 1
  • Mingchao Du
    • 1
  1. 1.College of Mechanical and Electronic EngineeringChina University of Petroleum (East China)QingdaoChina
  2. 2.Department of Aerospace Engineering and Engineering MechanicsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations