Skip to main content

Advertisement

Log in

Densification, microstructure and mechanical properties of spark plasma sintered Ni-17%Cr binary alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Spark plasma sintering (SPS) system was used to develop Ni-17%Cr alloys using nickel and chromium as the raw elemental materials. The powders were fabricated at different sintering temperatures ranging between 800 and 1100 °C, at constant pressure of 50 MPa, heating rate of 150 °C/min and holding time of 10 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Vickers microhardness tester and Archimedes’ method were used to investigate the effect of sintering temperature on its microstructure, phases, mechanical properties, densification and fracture mode. The results showed that the relative density, microhardness and fracture morphology of the alloy were affected by sintering temperature, which also affects the microstructure. The maximum relative density of 98.2% and hardness value of 296.33 HV1.0 were obtained at sintering temperature of 1100 °C. The fractography results revealed that the sintered alloys were characterized by transgranular fracture from 900 to 1100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowotnik A, Kubiak K, Sieniawski J, Rokicki P, Pędrak P, and Mrówka-Nowotnik G (2014) Development of nickel based superalloys for advanced turbine engines, in Materials science forum, pp. 2491–2496

  2. Oguma H, Tsukimoto K, Goya S, Okajima Y, Ishizaka K, Ito E (2015) Development of advanced materials and manufacturing technologies for high-efficiency gas turbines. MHI Technical Review 52(4):106-15

  3. Yu W, Qian C, Weng W, Zhang S (2016) Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys. J Prosthet Dent 116:286–291

    Article  Google Scholar 

  4. Breidi A, Fries SG, Palumbo M, Ruban AV (2016) First-principles modeling of energetic and mechanical properties of Ni–Cr, Ni–Re and Cr–Re random alloys. Comput Mater Sci 117:45–53

    Article  Google Scholar 

  5. Tin S and Pollock TM (2010) Nickel-based superalloys for blade application: production, performance and application. Encyclopedia of aerospace engineering

  6. Pollock TM (2016) Alloy design for aircraft engines. Nat Mater 15:809–815

    Article  Google Scholar 

  7. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide. ASM international, Russell

    Google Scholar 

  8. Briggs SA, Barr CM, Pakarinen J, Mamivand M, Hattar K, Morgan DD, Taheri M, Sridharan K (2016) Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys. J Nucl Mater 479:48–58

    Article  Google Scholar 

  9. Xu Y, Yan J, Sun F, Ikeda A, Gu Y (2016) Effect of further alloying elements on corrosion resistance of Ni-Cr alloys in molten glass. Corros Sci 112:647–656

    Article  Google Scholar 

  10. Sheibani Aghdam A, Allahkaram SR, Mahdavi S (2015) Corrosion and tribological behavior of Ni–Cr alloy coatings electrodeposited on low carbon steel in Cr (III)–Ni (II) bath. Surf Coat Technol 281:144–149

    Article  Google Scholar 

  11. He M-f, Wang H, Jiang H, Zhao S, Pan D (2016) Effect of hydrogen peroxide concentration on surface properties of Ni–Cr alloys. Trans Nonferrous Metals Soc China 26:1353–1358

    Article  Google Scholar 

  12. Schmucker E, Petitjean C, Martinelli L, Panteix P-J, Lagha B, Vilasi M (2016) Oxidation of Ni-Cr alloy at intermediate oxygen pressures. II. Towards the lifetime prediction of alloys. Corros Sci 111:467–473

    Article  Google Scholar 

  13. da Silva LJ, Leal MB, Valente MLC, de Castro DT, Pagnano VO, dos Reis AC, Bezzon OL (2017) Effect of casting atmosphere on the marginal deficiency and misfit of Ni-Cr alloys with and without beryllium. J Prosthet Dent 118:83–88

    Article  Google Scholar 

  14. Zhang Y, Song A, Ma D, Zhang X, Ma M, Liu R (2014) Sintering characteristics and grain growth behavior of MgO nanopowders by spark plasma sintering. J Alloys Compd 608:304–310

    Article  Google Scholar 

  15. Liu G, Li R, Yuan T, Zhang M, Zeng F (2017) Spark plasma sintering of pure TiCN: densification mechanism, grain growth and mechanical properties. Int J Refract Met Hard Mater 66:68–75

    Article  Google Scholar 

  16. Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro- and nano-composites by spark plasma sintering. Mater Res Bull 48:2535–2542

    Article  Google Scholar 

  17. He A, Zeng J (2017) Direct preparation of low Ni-Cr alloy cast iron from red mud and laterite nickel ore. Mater Des 115:433–440

    Article  Google Scholar 

  18. Halem Z, Halem N, Abrudeanu M, Chekroude S, Petot C, Petot-Ervas G (2016) Transport properties of Al or Cr-doped nickel oxide relevant to the thermal oxidation of dilute Ni-Al and Ni-Cr alloys. Solid State Ionics 297:13–19

    Article  Google Scholar 

  19. Wang YL, Wang Q, Liu HJ, Zeng CL (2016) Effect of grain refinement on the corrosion of Ni-Cr alloys in molten (Li,Na,K)F. Corrosion Science 109:43–49

    Article  Google Scholar 

  20. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–849

    Article  Google Scholar 

  21. Stanciu CA, Cernea M, Secu EC, Aldica G, Ganea P, Trusca R (2017) Lanthanum influence on the structure, dielectric properties and luminescence of BaTiO3 ceramics processed by spark plasma sintering technique. J Alloys Compd 706:538–545

    Article  Google Scholar 

  22. Shinohara T, Fujii T, Tohgo K, Shimamura Y (2017) Densification process in fabrication of PSZ-Ti composites by spark plasma sintering technique. Mater Charact 132:230–238

    Article  Google Scholar 

  23. Bahrami S, Zakeri M, Faeghinia A, Rahimipour MR (2017) Spark plasma sintering of silicon nitride/barium aluminum silicate composite. Ceram Int 43:9153–9157

    Article  Google Scholar 

  24. Hassanzadeh-Tabrizi SA (2017) Spark plasma sintering of forsterite nanopowder and mechanical properties of sintered materials. Ceram Int 43:15714–15718

    Article  Google Scholar 

  25. García JMJ, Li Z, Vahlas C, de La Torre SD, López FJ (2010) Spark plasma sintering and characterization of NiCoCrAlY-Ta superalloy powder. J Mater Sci Eng 4:57–63

    Google Scholar 

  26. Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T et al (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012:18

    Article  Google Scholar 

  27. Tokita M (1999) Mechanism of spark plasma sintering. in Proceeding of NEDO international symposium on functionally graded materials, p. 22

  28. Firestein KL, Steinman AE, Golovin IS, Cifre J, Obraztsova EA, Matveev AT, Kovalskii AM, Lebedev OI, Shtansky DV, Golberg D (2015) Fabrication, characterization, and mechanical properties of spark plasma sintered Al–BN nanoparticle composites. Mater Sci Eng A 642:104–112

    Article  Google Scholar 

  29. Hussein M, Suryanarayana C, Al-Aqeeli N (2015) Fabrication of nano-grained Ti–Nb–Zr biomaterials using spark plasma sintering. Mater Des 87:693–700

    Article  Google Scholar 

  30. Shongwe MB, Diouf S, Durowoju MO, Olubambi PA (2015) Effect of sintering temperature on the microstructure and mechanical properties of Fe–30%Ni alloys produced by spark plasma sintering. J Alloys Compd 649:824–832

    Article  Google Scholar 

  31. Liu PS, Chen GF (2014) Chapter two—making porous metals. In: Liu PS, Chen GF (eds) Porous Materials. Butterworth-Heinemann, Boston, pp 21–112

    Chapter  Google Scholar 

  32. Makena MI, Shongwe MB, Ramakokovhu MM, Olubambi PA (2017) Effect of sintering parameters on densification, corrosion and wear behaviour of Ni-50Fe alloy prepared by spark plasma sintering. J Alloys Compd 699:1166–1179

    Article  Google Scholar 

  33. Jiang L, Guo S, Bian Y, Zhang M, Ding W (2016) Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory. Ceram Int 42:10593–10598

    Article  Google Scholar 

  34. Hashemi SH (2011) Strength–hardness statistical correlation in API X65 steel. Mater Sci Eng A 528:1648–1655

    Article  Google Scholar 

  35. Shongwe M, Ramakokovhu M, Diouf S, Durowoju M, Obadele B, Sule R et al (2016) Effect of starting powder particle size and heating rate on spark plasma sintering of Fe Ni alloys. J Alloys Compd 678:241–248

    Article  Google Scholar 

  36. Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92:S122–S132

    Article  Google Scholar 

  37. Krasnowski M, Gierlotka S, Kulik T (2014) Al3Ni2–Al composites with nanocrystalline intermetallic matrix produced by consolidation of milled powders. Adv Powder Technol 25:1362–1368

    Article  Google Scholar 

  38. Reddy MP, Shakoor R, Mohamed A, Gupta M, Huang Q (2016) Effect of sintering temperature on the structural and magnetic properties of MgFe 2 O 4 ceramics prepared by spark plasma sintering. Ceram Int 42:4221–4227

    Article  Google Scholar 

  39. Shi K, Huang B, He B, Xiao Y, Yang X, Lian Y, Liu X, Tang J (2018) Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys. Nucl Eng Technol

  40. Gunnewiek RFK, Kiminami RHGA (2014) Effect of heating rate on microwave sintering of nanocrystalline zinc oxide. Ceram Int 40:10667–10675

    Article  Google Scholar 

Download references

Funding

This work is based on the research supported by the National Research Foundation (NRF) of South Africa for the grant, Unique Grant No. 99348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bukola Joseph Babalola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babalola, B.J., Shongwe, M.B., Obadele, B.A. et al. Densification, microstructure and mechanical properties of spark plasma sintered Ni-17%Cr binary alloys. Int J Adv Manuf Technol 101, 1573–1581 (2019). https://doi.org/10.1007/s00170-018-3062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-3062-y

Keywords

Navigation