Skip to main content
Log in

Improvement of AISI 304 austenitic stainless steel low-cycle fatigue life by initial and intermittent deep rolling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the current study, deep rolling treatment was applied to enhance low-cycle fatigue behavior of the AISI 304 stainless steel. Desirability function approach was applied to determine the process parameters offering the optimal surface roughness and hardness as these surface characteristics are supposed to control the fatigue cracks initiation and growth. The enhancement of the low-cycle fatigue behavior was investigated using strain-controlled fatigue tests applied to machined and deep rolled specimens associated to experimental evaluation of surface topography, microhardness, and residual stress. Findings of this work show that an increase of the fatigue lifetime of the AISI 304 components can be achieved by the application of deep rolling to machined surfaces. Moreover, the application of an intermittent deep rolling leads to a significant extension of service life especially when it is performed at low strain amplitudes. The improvement of the residual lifetime of deep rolled components is explained based on evaluations of the surface texture changes, residual stresses, cold work hardening, and strain-induced martensite transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasawa T, Sakurai H, Nakamura M, Tanaka T, Takano K (2003) Effects of free-cutting additives on the machinability of austenitic stainless steels. J Mater Process Technol 143–144:66–71. https://doi.org/10.1016/S0924-0136(03)00321-2

    Article  Google Scholar 

  2. Nastenk PVPRN (2015) Investigating the effects of cutting parameters on the built-up-layer and built-up-edge formation during the machining of AISI 310 austenitic stainless steels. Mater Tehnol 49(5):779–784

    Article  Google Scholar 

  3. Ben Moussa N, Sidhom H, Braham C (2012) Numerical and experimental analysis of residual stress and plastic strain distributions in machined stainless steel. Int J Mech Sci 64(1):82–93. https://doi.org/10.1016/j.ijmecsci.2012.07.011

    Article  Google Scholar 

  4. Yahyaoui H, Ben Moussa N, Braham C, Ben Fredj N, Sidhom H (2015) Role of machining defects and residual stress on the AISI 304 fatigue crack nucleation. Fatigue Fract Eng Mater Struct 38(4):420–433. https://doi.org/10.1111/ffe.12243

    Article  Google Scholar 

  5. Altenberger I, Scholtes B, Martin U, Oettel H (1999) Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Mater Sci Eng A 264(1):1–16. https://doi.org/10.1016/S0921-5093(98)01121-6

    Article  Google Scholar 

  6. H-s L, D-s K, J-s J, Y-s P, Shin K (2009) Influence of peening on the corrosion properties of AISI 304 stainless steel. Corros Sci 51(12):2826–2830. https://doi.org/10.1016/j.corsci.2009.08.008

    Article  Google Scholar 

  7. Unal O, Varol R (2015) Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening. Appl Surf Sci 351:289–295. https://doi.org/10.1016/j.apsusc.2015.05.093

    Article  Google Scholar 

  8. Wang GQ, Lei MK, Guo DM (2016) Interactions between surface integrity parameters on AISI 304 austenitic stainless steel components by ultrasonic impact treatment. Procedia CIRP 45:323–326. https://doi.org/10.1016/j.procir.2016.02.351

    Article  Google Scholar 

  9. Makhlouf K, Sidhom N, Khlifi A, Sidhom H, Braham C (2013) Low cycle fatigue life improvement of AISI 304 by initial and intermittent wire brush hammering. Mater Des (1980–2015) 52:1088–1098. https://doi.org/10.1016/j.matdes.2013.06.065

    Article  Google Scholar 

  10. Ben Fredj N, Ben Nasr M, Ben Rhouma A, Sidhom H, Braham C (2004) Fatigue life improvements of the AISI 304 stainless steel ground surfaces by wire brushing. J Mater Eng Perform 13(5):564–574. https://doi.org/10.1361/15477020420819

    Article  Google Scholar 

  11. Nikitin I, Scholtes B, Maier HJ, Altenberger I (2004) High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scr Mater 50(10):1345–1350. https://doi.org/10.1016/j.scriptamat.2004.02.012

    Article  Google Scholar 

  12. Muñoz-Cubillos J, Coronado JJ, Rodríguez SA (2017) Deep rolling effect on fatigue behavior of austenitic stainless steels. Int J Fatigue 95:120–131. https://doi.org/10.1016/j.ijfatigue.2016.10.008

    Article  Google Scholar 

  13. Akkurt A (2011) Comparison of roller burnishing method with other hole surface finishing processes applied on AISI 304 austenitic stainless steel. J Mater Eng Perform 20(6):960–968. https://doi.org/10.1007/s11665-010-9718-x

    Article  Google Scholar 

  14. Balusamy T, Narayanan TSNS, Ravichandran K, Park IS, Lee MH (2013) Plasma nitriding of AISI 304 stainless steel: role of surface mechanical attrition treatment. Mater Charact 85:38–47. https://doi.org/10.1016/j.matchar.2013.08.009

    Article  Google Scholar 

  15. Luo KY, Yao HX, Dai FZ, Lu JZ (2014) Surface textural features and its formation process of AISI 304 stainless steel subjected to massive LSP impacts. Opt Lasers Eng 55:136–142. https://doi.org/10.1016/j.optlaseng.2013.10.026

    Article  Google Scholar 

  16. Sano Y, Obata M, Kubo T, Mukai N, Yoda M, Masaki K, Ochi Y (2006) Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Mater Sci Eng A 417(1):334–340. https://doi.org/10.1016/j.msea.2005.11.017

    Article  Google Scholar 

  17. Smaga M, Walther F, Eifler D (2008) Deformation-induced martensitic transformation in metastable austenitic steels. Mater Sci Eng A 483–484:394–397. https://doi.org/10.1016/j.msea.2006.09.140

    Article  Google Scholar 

  18. Nikitin I, Altenberger I (2007) Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600°C. Mater Sci Eng A 465(1):176–182. https://doi.org/10.1016/j.msea.2007.02.004

    Article  Google Scholar 

  19. Fredj NB, Djemaiel A, Rhouma AB, Sidhom H, Braham C (2006) Effects of the cryogenic wire brushing on the surface integrity and the fatigue life improvements of the AISI 304 stainless steel ground components. In: Youtsos AG (ed) Residual stress and its effects on fatigue and fracture, Dordrecht, 2006. Springer, Netherlands, pp 77–86

    Chapter  Google Scholar 

  20. Costa NR, Lourenço J, Pereira ZL (2011) Desirability function approach: a review and performance evaluation in adverse conditions. Chemom Intell Lab Syst 107(2):234–244. https://doi.org/10.1016/j.chemolab.2011.04.004

    Article  Google Scholar 

  21. Chomienne V, Valiorgue F, Rech J, Verdu C (2016) Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel. CIRP J Manuf Sci Technol 13:90–96. https://doi.org/10.1016/j.cirpj.2015.12.003

    Article  Google Scholar 

  22. Shiou F-J, Huang S-J, Shih AJ, Zhu J, Yoshino M (2017) Fine surface finish of a hardened stainless steel using a new burnishing tool. sProcedia Manuf 10:208–217. https://doi.org/10.1016/j.promfg.2017.07.048

    Article  Google Scholar 

  23. Zhang P, Liu Z (2015) Effect of sequential turning and burnishing on the surface integrity of Cr–Ni-based stainless steel formed by laser cladding process. Surf Coat Technol 276:327–335. https://doi.org/10.1016/j.surfcoat.2015.07.026

    Article  Google Scholar 

  24. Zhang T, Bugtai N, Marinescu ID (2015) Burnishing of aerospace alloy: a theoretical–experimental approach. J Manuf Syst 37:472–478. https://doi.org/10.1016/j.jmsy.2014.11.004

    Article  Google Scholar 

  25. Tourki Z, Bargui H, Sidhom H (2005) The kinetic of induced martensitic formation and its effect on forming limit curves in the AISI 304 stainless steel. J Mater Process Technol 166(3):330–336. https://doi.org/10.1016/j.jmatprotec.2003.08.010

    Article  Google Scholar 

  26. Manson SS, Halford GR (2006) Fatigue and durability of structural materials. Materials Park, Ohio, ASM International

  27. Campbell FC (2008) Elements of metallurgy and engineering alloys. Materials Park, Ohio, ASM International

  28. Ye D, Matsuoka S, Nagashima N, Suzuki N (2006) The low-cycle fatigue, deformation and final fracture behaviour of an austenitic stainless steel. Mater Sci Eng A 415(1–2):104–117. https://doi.org/10.1016/j.msea.2005.09.081

    Article  Google Scholar 

  29. Sankara Rao KB, Valsan M, Mannan SL (1990) Strain-controlled low cycle fatigue behaviour of type 304 stainless steel base material, type 308 stainless steel weld metal and 304–308 stainless steel weldments. Mater Sci Eng A 130(1):67–82. https://doi.org/10.1016/0921-5093(90)90082-E

    Article  Google Scholar 

  30. Sidhom N, Moussa NB, Janeb S, Braham C, Sidhom H (2014) Potential fatigue strength improvement of AA 5083-H111 notched parts by wire brush hammering: experimental analysis and numerical simulation. Mater Des 64:503–519. https://doi.org/10.1016/j.matdes.2014.08.002

    Article  Google Scholar 

  31. Nikitin I, Besel M (2008) Residual stress relaxation of deep-rolled austenitic steel. Scr Mater 58(3):239–242. https://doi.org/10.1016/j.scriptamat.2007.09.045

    Article  Google Scholar 

  32. Kundu S, Bhadeshia HKDH (2006) Transformation texture in deformed stainless steel. Scr Mater 55(9):779–781. https://doi.org/10.1016/j.scriptamat.2006.07.021

    Article  Google Scholar 

  33. Mertinger V, Nagy E, Tranta F, Sólyom J (2008) Strain-induced martensitic transformation in textured austenitic stainless steels. Mater Sci Eng A 481–482:718–722. https://doi.org/10.1016/j.msea.2007.02.165

    Article  Google Scholar 

  34. Topic M, Tait RB, Allen C (2007) The fatigue behaviour of metastable (AISI-304) austenitic stainless steel wires. Int J Fatigue 29(4):656–665. https://doi.org/10.1016/j.ijfatigue.2006.07.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoufel Ben Moussa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Moussa, N., Gharbi, K., Chaieb, I. et al. Improvement of AISI 304 austenitic stainless steel low-cycle fatigue life by initial and intermittent deep rolling. Int J Adv Manuf Technol 101, 435–449 (2019). https://doi.org/10.1007/s00170-018-2955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2955-0

Keywords

Navigation