Almotairi A, Warkentin A, Farhat Z (2016) Mechanical damage of hard chromium coatings on 416 stainless steel. Eng Fail Anal 66:130–140. https://doi.org/10.1016/j.engfailanal.2016.04.011
Article
Google Scholar
Kim HG, Kim IH, Il JY et al (2015) Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating. J Nucl Mater 465:531–539. https://doi.org/10.1016/j.jnucmat.2015.06.030
Article
Google Scholar
Wang Y, Zhou W, Wen Q, Ruan X, Luo F, Bai G, Qing Y, Zhu D, Huang Z, Zhang Y, Liu T, Li R (2018) Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions. Surf Coat Technol 344:141–148. https://doi.org/10.1016/j.surfcoat.2018.03.016
Article
Google Scholar
Arnal BB (2018) Atomic-scale interface structure of a Cr-coated Zircaloy-4 material. J Mater Sci 53:9879–9895. https://doi.org/10.1007/s10853-018-2333-1
Article
Google Scholar
Park DJ, Kim HG, Il JY et al (2016) Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions. J Nucl Mater 482:75–82. https://doi.org/10.1016/j.jnucmat.2016.10.021
Article
Google Scholar
Maier B, Yeom H, Johnson G, Dabney T, Walters J, Romero J, Shah H, Xu P, Sridharan K (2018) Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors. JOM 70:198–202. https://doi.org/10.1007/s11837-017-2643-9
Article
Google Scholar
Lahoda E, Xu P, Karoutas Z, et al (2018) Cold spray chromium coating for nuclear fuel rods. US Patent:US 2018 / 0025793 A1
Assadi H, Gärtner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51:4379–4394. https://doi.org/10.1016/S1359-6454(03)00274-X
Article
Google Scholar
Ajdelsztajn L, Jodoin B, Kim GE, Schoenung JM (2005) Cold spray deposition of nanocrystalline aluminum alloys. Metall Mater Trans A 36A:657–666. https://doi.org/10.1007/s11661-005-0099-y
Article
Google Scholar
Cavaliere P (2018) Cold-spray coatings recent trends and future perspectives. Springer, Cham
Book
Google Scholar
Romero JE, Byers WA, Wang G, et al (2017) Simulated severe accident testing for evaluation of accident tolerant fuel. 2017 Water react. Fuel Perform Meet
Shah H, Romero J, Xu P et al (2017) Development of surface coatings for enhanced accident tolerant fuel. 2017 Water react. Fuel Perform Meet
Lee C, Kim J (2015) Microstructure of kinetic spray coatings: a review. J Therm Spray Technol 24:592–610. https://doi.org/10.1007/s11666-015-0223-5
Article
Google Scholar
Sansoucy E, Marcoux P, Ajdelsztajn L, Jodoin B (2008) Properties of SiC-reinforced aluminum alloy coatings produced by the cold gas dynamic spraying process. Surf Coat Technol 202:3988–3996. https://doi.org/10.1016/j.surfcoat.2008.02.017
Article
Google Scholar
Fernandez R, Jodoin B (2017) Effect of particle morphology on cold spray deposition of chromium carbide-nickel chromium cermet powders. J Therm Spray Technol 26:1356–1380. https://doi.org/10.1007/s11666-017-0580-3
Article
Google Scholar
Wolfe DE, Eden TJ, Potter JK, Jaroh AP (2006) Investigation and characterization of Cr3C2-based wear-resistant coatings applied by the cold spray process. J Therm Spray Technol 15:400–412. https://doi.org/10.1361/105996306X124400
Article
Google Scholar
Al-Mangour B, Mongrain R, Irissou E, Yue S (2013) Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray. Surf Coat Technol 216:297–307. https://doi.org/10.1016/j.surfcoat.2012.11.061
Article
Google Scholar
Smith WH, Seybolt AU (1956) Ductile chromium. J Electrochem Soc 103:347. https://doi.org/10.1149/1.2430326
Article
Google Scholar
(1990) Properties of pure metals: ASM handbook, Vol.2. ASM International
Sova A, Grigoriev S, Okunkova A, Smurov I (2013) Potential of cold gas dynamic spray as additive manufacturing technology. Int J Adv Manuf Technol 69:2269–2278. https://doi.org/10.1007/s00170-013-5166-8
Article
Google Scholar
Yeom H, Maier BR, Johnson G, Sridharan K (2018) Cold spray coatings for accident tolerant Zr-alloy cladding in light water reactors. In: Trans. Am. Nucl. Soc. American Nuclear Society, Philadelphia, PA USA, pp 1576–1579
Allen RF (1999) Standard test methods for determining average grain size (F112). https://doi.org/10.1520/E1382-97R04
Choi IC, Brandl C, Schwaiger R (2017) Thermally activated dislocation plasticity in body-centered cubic chromium studied by high-temperature nanoindentation. Acta Mater 140:107–115. https://doi.org/10.1016/j.actamat.2017.08.026
Article
Google Scholar
Maier V, Hohenwarter A, Pippan R, Kiener D (2015) Thermally activated deformation processes in body-centered cubic Cr—how microstructure influences strain-rate sensitivity. Scr Mater 106:42–45. https://doi.org/10.1016/j.scriptamat.2015.05.001
Article
Google Scholar
King PC, Zahiri SH, Jahedi M (2009) Microstructural refinement within a cold-sprayed copper particle. Metall Mater Trans A 40:2115–2123. https://doi.org/10.1007/s11661-009-9882-5
Article
Google Scholar
Luo XT, Li CX, Shang FL, Yang GJ, Wang YY, Li CJ (2014) High velocity impact induced microstructure evolution during deposition of cold spray coatings: a review. Surf Coat Technol 254:11–20. https://doi.org/10.1016/j.surfcoat.2014.06.006
Article
Google Scholar
Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Microhardness measurements and the hall-petch relationship in an Al-Mg alloy with submicrometer grain size. Acta Mater 44:4619–4629. https://doi.org/10.1016/1359-6454(96)00105-X
Article
Google Scholar
Brittain CP, Armstrong RW, Smith GC (1985) Hall-petch dependence for ultrafine grain size electrodeposited chromium. Scr Metall 19:89–91. https://doi.org/10.1016/0036-9748(85)90271-6
Article
Google Scholar
Yuuji K, Setsuo T (1995) Microstructural changes during annealing of work-hardened mechanically milled metallic powders (overview). Mater Trans JIM 36:289–296. https://doi.org/10.2320/matertrans1989.36.289
Article
Google Scholar
Al-Mangour B, Vo P, Mongrain R et al (2014) Effect of heat treatment on the microstructure and mechanical properties of stainless steel 316L coatings produced by cold spray for biomedical applications. J Therm Spray Technol 23:641–652. https://doi.org/10.1007/s11666-013-0053-2
Article
Google Scholar
Li CJ, Li WY, Wang YY (2005) Formation of metastable phases in cold-sprayed soft metallic deposit. Surf Coat Technol 198:469–473. https://doi.org/10.1016/j.surfcoat.2004.10.063
Article
Google Scholar
Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73. https://doi.org/10.1016/j.msea.2011.08.061
Article
Google Scholar
Chen C, Xie Y, Huang R, Deng S, Ren Z, Liao H (2018) On the role of oxide film’s cleaning effect into the metallurgical bonding during cold spray. Mater Lett 210:199–202. https://doi.org/10.1016/j.matlet.2017.09.024
Article
Google Scholar
Li WY, Zhang C, Wang HT, Guo XP, Liao HL, Li CJ, Coddet C (2007) Significant influences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying. Appl Surf Sci 253:3557–3562. https://doi.org/10.1016/j.apsusc.2006.07.063
Article
Google Scholar