Advertisement

Analyzing of joint strength, impact energy, and angular distortion of the ABS friction stir welded joints reinforced by nanosilica addition

  • Reza Bagherian AzhiriEmail author
  • Jalal Fathi Sola
  • Ramin Mehdizad Tekiyeh
  • Farid Javidpour
  • Abolfaz Salmani Bideskan
ORIGINAL ARTICLE
  • 66 Downloads

Abstract

In the present work, experimental investigation has been carried out to enhance the properties of acrylonitrile butadiene styrene joints. Here, nanosilica particle was used as reinforcement to form composite-like structure in the friction stir processed region and improve the joint strength. Experiments were designed based on response surface methodology to correlate relationship between parameters viz. nanosilica volume fraction, pass number, tool rotation speed, and travel speed to responses viz. tensile strength, hardness, and angular distortion. Analysis of variances has also been performed to find which factor has the greatest impact on joint properties. It is found from the results that silica addition and pass number have significant influence on tensile strength and hardness. Also, the angular distortion is mainly influenced by silica volume fraction and tool rotational speed. In order to find optimal combination of process parameter regarding maximum strength and hardness as well as minimum angular distortion, desirability approach function was utilized. The obtained results showed that in order, 20% silica volume fraction, two pass numbers, 1600 rpm tool rotation, and 40 mm/min travel speed cause desirability of 83%. The optimum results were further verified through confirmatory experiment.

Keywords

FSW ABS Nanosilica Reinforcement Empirical analysis RSM Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oliveira PHF, Amancio-Filho ST, Dos Santos JF, Hage E (2010) Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett 64(19):2098–2101CrossRefGoogle Scholar
  2. 2.
    Kiss Z, Czigány T (2007) Applicability of friction stir welding in polymeric materials. Periodica Polytechnica Engineering Mechanical Engineering 51(1):15CrossRefGoogle Scholar
  3. 3.
    Çam G, İpekoğlu G (2017) Recent developments in joining of aluminum alloys. Int J Adv Manuf Technol 91(5–8):1851–1866CrossRefGoogle Scholar
  4. 4.
    Çam G, İpekoğlu G, Küçükömeroğlu T, Aktarer SM (2017) Applicability of friction stir welding to steels. Journal of Achievements in Materials and Manufacturing Engineering 2(80):65–85CrossRefGoogle Scholar
  5. 5.
    Cam G, Mistikoglu S (2014) Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform 23(6):1936–1953CrossRefGoogle Scholar
  6. 6.
    Çam G (2011) Friction stir welded structural materials: beyond Al-alloys. Int Mater Rev 56(1):1–48CrossRefGoogle Scholar
  7. 7.
    Çam G, İpekoğlu G, Tarık Serindağ H (2014) Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Sci Technol Weld Join 19(8):715–720CrossRefGoogle Scholar
  8. 8.
    İpekoğlu G, Erim S, Çam G (2014) Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions. Metall Mater Trans A 45(2):864–877CrossRefGoogle Scholar
  9. 9.
    İpekoğlu G, Gören Kıral B, Erim S, Çam G (2012) Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates. Mater Technol 46(6):627–632Google Scholar
  10. 10.
    İpekoğlu G, Erim S, Kıral BG, Çam G (2013) Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates. Kovove Mater 51(3):155–163Google Scholar
  11. 11.
    İpekoğlu G, Çam G (2014) Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys. Metall Mater Trans A 45(7):3074–3087CrossRefGoogle Scholar
  12. 12.
    Çam G, Güçlüer S, Çakan A, Serindağ HT (2008) Mechanical properties of friction stir butt-welded Al-5086 H32 plate. Journal of Achievements in Materials and Manufacturing Engineering 30(2):151–154Google Scholar
  13. 13.
    Küçükömeroğlu T, Şentürk E, Kara L, İpekoğlu G, Çam G (2016) Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy. J Mater Eng Perform 25(1):320–326CrossRefGoogle Scholar
  14. 14.
    Çam G, Mistikoglu S, Pakdil M (2009) Microstructural and mechanical characterization of friction stir butt joint welded 63% Cu-37% Zn brass plate. Weld J 88(11):225S–232SGoogle Scholar
  15. 15.
    Çam G, Serindağ HT, Çakan A, Mistikoglu S, Yavuz H (2008) The effect of weld parameters on friction stir welding of brass plates. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe 39(6):394–399CrossRefGoogle Scholar
  16. 16.
    Cavaliere P, De Marco PP (2006) Effect of friction stir processing on mechanical and microstructural properties of AM60B magnesium alloy. J Mater Sci 41(11):3459–3464CrossRefGoogle Scholar
  17. 17.
    Liu FC, Hovanski Y, Miles MP, Sorensen CD, Nelson TW (2018) A review of friction stir welding of steels: tool, material flow, microstructure, and properties. J Mater Sci Technol 34(1):39–57CrossRefGoogle Scholar
  18. 18.
    Strand SR, Sorensen CD, & Nelson TW (2003) Effects of friction stir welding on polymer microstructure. In ANTEC 2003 Conference Proceedings (pp. 1078–1082)Google Scholar
  19. 19.
    Arici A, Sinmazçelýk T (2005) Effects of double passes of the tool on friction stir welding of polyethylene. J Mater Sci 40(12):3313–3316CrossRefGoogle Scholar
  20. 20.
    Bjorkman G, Cantrell M, Carter R (2003) Self-reacting friction stir welding for aluminum alloy circumferential weld applicationsGoogle Scholar
  21. 21.
    Pirizadeh M, Azdast T, Ahmadi SR, Shishavan SM, Bagheri A (2014) Friction stir welding of thermoplastics using a newly designed tool. Mater Des 54:342–347CrossRefGoogle Scholar
  22. 22.
    Bagheri A, Azdast T, Doniavi A (2013) An experimental study on mechanical properties of friction stir welded ABS sheets. Mater Des 43:402–409CrossRefGoogle Scholar
  23. 23.
    Sadeghian N, Givi MKB (2015) Experimental optimization of the mechanical properties of friction stir welded acrylonitrile butadiene styrene sheets. Mater Des 67:145–153CrossRefGoogle Scholar
  24. 24.
    Mendes N, Loureiro A, Martins C, Neto P, Pires JN (2014) Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Mater Des 64:81–90CrossRefGoogle Scholar
  25. 25.
    Mendes N, Loureiro A, Martins C, Neto P, Pires JN (2014) Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater Des 58:457–464CrossRefGoogle Scholar
  26. 26.
    Azarsa E, Mostafapour A (2014) Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. J Manuf Process 16(1):149–155CrossRefGoogle Scholar
  27. 27.
    Bilici MK, Yükler Aİ, Kurtulmuş M (2011) The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater Des 32(7):4074–4079CrossRefGoogle Scholar
  28. 28.
    Bilici MK, Yükler AI (2012) Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Mater Des 33:145–152CrossRefGoogle Scholar
  29. 29.
    Saeidi M, Barmouz M, Givi MKB (2015) Investigation on AA5083/AA7075+ Al2O3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior. Mater Res 18(6):1156–1162CrossRefGoogle Scholar
  30. 30.
    Sun YF, Fujii H (2011) The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints. Mater Sci Eng A 528(16):5470–5475CrossRefGoogle Scholar
  31. 31.
    Kartsonakis IA, Dragatogiannis DA, Koumoulos EP, Karantonis A, Charitidis CA (2016) Corrosion behaviour of dissimilar friction stir welded aluminium alloys reinforced with nanoadditives. Mater Des 102:56–67CrossRefGoogle Scholar
  32. 32.
    Bodaghi M, Dehghani K (2017) Friction stir welding of AA5052: the effects of SiC nano-particles addition. Int J Adv Manuf Technol 88(9–12):2651–2660CrossRefGoogle Scholar
  33. 33.
    Gao J, Li C, Shilpakar U, Shen Y (2015) Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process. Mater Des 86:289–296CrossRefGoogle Scholar
  34. 34.
    Thangarasu A, Murugan N, Dinaharan I, Vijay SJ (2015) Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing. Arch Civ Mech Eng 15(2):324–334CrossRefGoogle Scholar
  35. 35.
    Shayan AV, Afza RA, Teimouri R (2013) Parametric study along with selection of optimal solutions in dry wire cut machining of cemented tungsten carbide (WC-Co). J Manuf Process 15(4):644–658CrossRefGoogle Scholar
  36. 36.
    Kim IJ, Kwon OS, Park JB, Joo H (2006) Synthesis and characterization of ABS/silica hybrid nanocomposites. Curr Appl Phys 6:e43–e47CrossRefGoogle Scholar
  37. 37.
    Tian X, Zhang X, Liu W, Zheng J, Ruan C, Cui P (2006) Preparation and properties of poly (ethylene terephthalate)/silica nanocomposites. J Macromol Sci, Part B 45(4):507–513CrossRefGoogle Scholar
  38. 38.
    Teimouri R, Baseri H (2015) Forward and backward predictions of the friction stir welding parameters using fuzzy-artificial bee colony-imperialist competitive algorithm systems. J Intell Manuf 26(2):307–319CrossRefGoogle Scholar
  39. 39.
    Nateghi E, Hosseinzadeh M (2016) Experimental investigation into effect of cooling of traversed weld nugget on quality of high-density polyethylene joints. Int J Adv Manuf Technol 84(1–4):581–594CrossRefGoogle Scholar
  40. 40.
    Teimouri R, Amini S, Mohagheghian N (2017) Experimental study and empirical analysis on effect of ultrasonic vibration during rotary turning of aluminum 7075 aerospace alloy. J Manuf Process 26:1–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Reza Bagherian Azhiri
    • 1
    Email author
  • Jalal Fathi Sola
    • 2
  • Ramin Mehdizad Tekiyeh
    • 3
  • Farid Javidpour
    • 4
  • Abolfaz Salmani Bideskan
    • 5
  1. 1.Department of Mechanical EngineeringUniversity of Texas at DallasRichardsonUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Department of Mechanical EngineeringK.N Toosi University of TechnologyTehranIran
  4. 4.Department of Mechanical EngineeringUniversity of North Carolina at CharlotteCharlotteUSA
  5. 5.Department of Mechanical EngineeringUniversity of TabrizTabrizIran

Personalised recommendations