Skip to main content
Log in

Effect of tool nose radius and tool wear on residual stresses distribution while turning in situ TiB2/7050 Al metal matrix composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In situ TiB2/7050 Al matrix composite is a new kind of particle reinforced metal matrix composite. With in situ synthesis method, a better adhesion at interfaces is achieved and hence improves mechanical properties. However, due to the presence of hard TiB2 ceramic particles, the tool wear problem is severer while machining TiB2/7050 Al composites compared with traditional metallic alloy. In order to have a deeper understanding of the residuals stress distribution during machining metal matrix composites, this paper investigates the effect of tool nose radius and tool wear on the residual stress distribution during turning TiB2/7050 Al composites. Four CBN tools with different tool nose radius (0.4, 0.6, 0.8, and 1.0 mm) are used. The cutting force and residual stress distribution beneath the machined surface have been analyzed when the CBN tools are new or worn (0.26 mm VB). The results show that the residual compressive stress distribution is always obtained on the machined surface and subsurface no matter the tools are new or worn. The larger tool nose radius causes the increase of cutting force, lower surface residual compressive stress, and deeper residual stress penetration layer. As the tool wear, the location of maximum residual compressive stress transfers from the machined surface to the deeper subsurface. Compared with the tool nose radius, the tool wear has more significant influence on the cutting force and residual stress distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholls CJ, Boswell B, Davies IJ, Islam MN (2016) Review of machining metal matrix composites. Int J Adv Manuf Technol 90(9–12):1–13

    Google Scholar 

  2. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121

    Article  Google Scholar 

  3. Ozben T, Kilickap E, Çakır O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol 198(1–3):220–225

    Article  Google Scholar 

  4. Przestacki D, Szymanski P, Wojciechowski S (2016) Formation of surface layer in metal matrix composite A359/20SiCP during laser assisted turning. Compos Pt A-Appl Sci Manuf 91:370–379

    Article  Google Scholar 

  5. Aurich JC, Zimmermann M, Schindler S, Steinmann P (2016) Effect of the cutting condition and the reinforcement phase on the thermal load of the workpiece when dry turning aluminum metal matrix composites. Int J Adv Manuf Technol 82(5–8):1317–1334

    Article  Google Scholar 

  6. Pramanik A, Islam MN, Davies IJ, Boswell B, Dong Y, Basak AK, Uddin MS, Dixit AR, Chattopadhyaya S (2017) Contribution of machining to the fatigue behaviour of metal matrix composites (MMCs) of varying reinforcement size. Int J Fatigue 102:9–17

    Article  Google Scholar 

  7. Bian R, He N, Li L, Zhan ZB, Wu Q, Shi ZY (2014) Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill. Int J Adv Manuf Technol 71(1–4):411–419

    Article  Google Scholar 

  8. Anandakrishnan V, Mahamani A (2011) Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061–TiB2 in situ metal matrix composites produced by flux-assisted synthesis. Int J Adv Manuf Technol 55(1–4):65–73

    Article  Google Scholar 

  9. Geng J, Liu G, Wang F, Hong T, Xia C, Wang M, Chen D, Ma N, Wang H (2017) Microstructural and mechanical anisotropy of extruded in-situ TiB2/2024 composite plate. Mater Sci Eng A-Struct Mater 687:131–140

    Article  Google Scholar 

  10. Tjong SC, Ma Z (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R Rep 29(3):49–113

    Article  Google Scholar 

  11. Przestacki D (2014) Conventional and laser assisted machining of composite A359/20SiCp. Procedia CIRP 14:229–233

    Article  Google Scholar 

  12. Xiang J, Pang S, Xie L, Hu X, Peng S, Wang T (2018) Investigation of cutting forces, surface integrity, and tool wear when high-speed milling of high-volume fraction SiCp/Al6063 composites in PCD tooling. Int J Adv Manuf Technol 98:1237–1251. https://doi.org/10.1007/s00170-018-2294-1

    Article  Google Scholar 

  13. Xiong Y, Wang W, Jiang R, Lin K, Song G (2016) Tool wear mechanisms for milling in situ TiB2 particle-reinforced Al matrix composites. Int J Adv Manuf Technol 86(9–12):3517–3526

    Article  Google Scholar 

  14. Huang ST, Zhou L, Yu XL, Cui Y (2012) Experimental study of high-speed milling of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol 62(5–8):487–493

    Article  Google Scholar 

  15. Yang Y, Wu Q, Zhan Z, Li L, He N, Shrestha R (2015) An experimental study on milling of high-volume fraction SiCP/Al composites with PCD tools of different grain size. Int J Adv Manuf Technol 79(9–12):1699–1705

    Article  Google Scholar 

  16. Muthukrishnan N, Murugan M, Rao KP (2008) An investigation on the machinability of Al-SiC metal matrix composites using pcd inserts. Int J Adv Manuf Technol 38(5–6):447–454

    Article  Google Scholar 

  17. Zhong ZW, Lin G (2006) Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles. Int J Adv Manuf Technol 27(11–12):1077–1081

    Article  Google Scholar 

  18. Kawalec M, Przestacki D, Bartkowiak K, Jankowiak M, (2008) Laser assisted machining of aluminium composite reinforced by SiC particle. Proceedings of the 27th International Congress on Applications of Lasers & Electro-Optics (ICALEO 2008), Temecula, California, USA: 895–900

  19. Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48(15):1613–1625

    Article  Google Scholar 

  20. Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives, Industrial press Inc

  21. Suresh Kumar Reddy N, Kwang-Sup S, Yang M (2008) Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites. J Mater Process Technol 201(1–3):574–579

    Article  Google Scholar 

  22. Wang T, Xie LJ, Wang XB, Jiao L, Shen JW, Xu H, Nie FM (2013) Surface integrity of high speed milling of Al/SiC/65p aluminum matrix composites. Procedia CIRP 8:475–480

    Article  Google Scholar 

  23. Aurich JC, Zimmermann M, Schindler S, Steinmann P (2016) Turning of aluminum metal matrix composites: influence of the reinforcement and the cutting condition on the surface layer of the workpiece. Adv Manuf 4(3):225–236

    Article  Google Scholar 

  24. Schubert A, Nestler A, Mehner T (2012) Influencing the residual stresses in the surface layer by use of appropriate cutting parameters and tool geometries in turning of aluminium matrix composites. Materialwiss Werkst 43(7):648–655

    Article  Google Scholar 

  25. Dabade UA, Joshi SS, Balasubramaniam R, Bhanuprasad VV (2007) Surface finish and integrity of machined surfaces on Al/SiCp composites. J Mater Process Technol 192–193:166–174

    Article  Google Scholar 

  26. Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54

    Article  Google Scholar 

  27. Navas VG, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57

    Article  Google Scholar 

  28. Tang ZT, Liu ZQ, Pan YZ, Wan Y, Ai X (2009) The influence of tool flank wear on residual stresses induced by milling aluminum alloy. J Mater Process Technol 209(9):4502–4508

    Article  Google Scholar 

  29. Li W, Withers PJ, Axinte D, Preuss M, Andrews P (2009) Residual stresses in face finish turning of high strength nickel-based superalloy. J Mater Process Technol 209(10):4896–4902

    Article  Google Scholar 

  30. Madariaga A, Esnaola JA, Fernandez E, Arrazola PJ, Garay A, Morel F (2014) Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int J Adv Manuf Technol 71(9):1587–1598

    Article  Google Scholar 

  31. Geng J, Liu G, Wang F, Hong T, Dai J, Wang M, Chen D, Ma N, Wang H (2017) Microstructural correlated damage mechanisms of the high-cycle fatigued in-situ TiB2/Al-Cu-Mg composite. Mater Des 135:423–438

    Article  Google Scholar 

  32. Geng J, Hong T, Ma Y, Wang M, Chen D, Ma N, Wang H (2016) The solution treatment of in-situ sub-micron TiB2/2024 Al composite. Mater Des 98:186–193

    Article  Google Scholar 

  33. Tang Y, Chen Z, Borbély A, Ji G, Zhong SY, Schryvers D, Ji V, Wang HW (2015) Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy. Mater Charact 102:131–136

    Article  Google Scholar 

  34. Sharman ARC, Hughes JI, Ridgway K (2015) The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718™. J Mater Process Technol 216:123–132

    Article  Google Scholar 

  35. Liu M, Takagi J-I, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150(3):234–241

    Article  Google Scholar 

  36. Chou YK, Song H (2004) Tool nose radius effects on finish hard turning. J Mater Process Technol 148(2):259–268

    Article  Google Scholar 

  37. Ulutan D, Arisoy YM, Özel T, Mears L (2014) Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function. Procedia CIRP 13:365–370

    Article  Google Scholar 

  38. Wang J, Huang CZ, Song WG (2003) The effect of tool flank wear on the orthogonal cutting process and its practical implications. J Mater Process Technol 142(2):338–346

    Article  Google Scholar 

  39. Davim JP (2010) Surface integrity in machining. Springer, London

    Book  Google Scholar 

Download references

Funding

This work is financially supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No. CX201829), the National Natural Science Foundation of China (Grant No. 51775443), and the 111 Project (Grant No. B13044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruisong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Wang, W., Jiang, R. et al. Effect of tool nose radius and tool wear on residual stresses distribution while turning in situ TiB2/7050 Al metal matrix composites. Int J Adv Manuf Technol 100, 143–151 (2019). https://doi.org/10.1007/s00170-018-2742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2742-y

Keywords

Navigation