Effect of tool nose radius and tool wear on residual stresses distribution while turning in situ TiB2/7050 Al metal matrix composites

  • Kunyang Lin
  • Wenhu Wang
  • Ruisong JiangEmail author
  • Yifeng Xiong


In situ TiB2/7050 Al matrix composite is a new kind of particle reinforced metal matrix composite. With in situ synthesis method, a better adhesion at interfaces is achieved and hence improves mechanical properties. However, due to the presence of hard TiB2 ceramic particles, the tool wear problem is severer while machining TiB2/7050 Al composites compared with traditional metallic alloy. In order to have a deeper understanding of the residuals stress distribution during machining metal matrix composites, this paper investigates the effect of tool nose radius and tool wear on the residual stress distribution during turning TiB2/7050 Al composites. Four CBN tools with different tool nose radius (0.4, 0.6, 0.8, and 1.0 mm) are used. The cutting force and residual stress distribution beneath the machined surface have been analyzed when the CBN tools are new or worn (0.26 mm VB). The results show that the residual compressive stress distribution is always obtained on the machined surface and subsurface no matter the tools are new or worn. The larger tool nose radius causes the increase of cutting force, lower surface residual compressive stress, and deeper residual stress penetration layer. As the tool wear, the location of maximum residual compressive stress transfers from the machined surface to the deeper subsurface. Compared with the tool nose radius, the tool wear has more significant influence on the cutting force and residual stress distribution.


Metal matrix composites TiB2 particle Residual stress Nose radius Tool wear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This work is financially supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No. CX201829), the National Natural Science Foundation of China (Grant No. 51775443), and the 111 Project (Grant No. B13044).


  1. 1.
    Nicholls CJ, Boswell B, Davies IJ, Islam MN (2016) Review of machining metal matrix composites. Int J Adv Manuf Technol 90(9–12):1–13Google Scholar
  2. 2.
    Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121CrossRefGoogle Scholar
  3. 3.
    Ozben T, Kilickap E, Çakır O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol 198(1–3):220–225CrossRefGoogle Scholar
  4. 4.
    Przestacki D, Szymanski P, Wojciechowski S (2016) Formation of surface layer in metal matrix composite A359/20SiCP during laser assisted turning. Compos Pt A-Appl Sci Manuf 91:370–379CrossRefGoogle Scholar
  5. 5.
    Aurich JC, Zimmermann M, Schindler S, Steinmann P (2016) Effect of the cutting condition and the reinforcement phase on the thermal load of the workpiece when dry turning aluminum metal matrix composites. Int J Adv Manuf Technol 82(5–8):1317–1334CrossRefGoogle Scholar
  6. 6.
    Pramanik A, Islam MN, Davies IJ, Boswell B, Dong Y, Basak AK, Uddin MS, Dixit AR, Chattopadhyaya S (2017) Contribution of machining to the fatigue behaviour of metal matrix composites (MMCs) of varying reinforcement size. Int J Fatigue 102:9–17CrossRefGoogle Scholar
  7. 7.
    Bian R, He N, Li L, Zhan ZB, Wu Q, Shi ZY (2014) Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill. Int J Adv Manuf Technol 71(1–4):411–419CrossRefGoogle Scholar
  8. 8.
    Anandakrishnan V, Mahamani A (2011) Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061–TiB2 in situ metal matrix composites produced by flux-assisted synthesis. Int J Adv Manuf Technol 55(1–4):65–73CrossRefGoogle Scholar
  9. 9.
    Geng J, Liu G, Wang F, Hong T, Xia C, Wang M, Chen D, Ma N, Wang H (2017) Microstructural and mechanical anisotropy of extruded in-situ TiB2/2024 composite plate. Mater Sci Eng A-Struct Mater 687:131–140CrossRefGoogle Scholar
  10. 10.
    Tjong SC, Ma Z (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R Rep 29(3):49–113CrossRefGoogle Scholar
  11. 11.
    Przestacki D (2014) Conventional and laser assisted machining of composite A359/20SiCp. Procedia CIRP 14:229–233CrossRefGoogle Scholar
  12. 12.
    Xiang J, Pang S, Xie L, Hu X, Peng S, Wang T (2018) Investigation of cutting forces, surface integrity, and tool wear when high-speed milling of high-volume fraction SiCp/Al6063 composites in PCD tooling. Int J Adv Manuf Technol 98:1237–1251. CrossRefGoogle Scholar
  13. 13.
    Xiong Y, Wang W, Jiang R, Lin K, Song G (2016) Tool wear mechanisms for milling in situ TiB2 particle-reinforced Al matrix composites. Int J Adv Manuf Technol 86(9–12):3517–3526CrossRefGoogle Scholar
  14. 14.
    Huang ST, Zhou L, Yu XL, Cui Y (2012) Experimental study of high-speed milling of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol 62(5–8):487–493CrossRefGoogle Scholar
  15. 15.
    Yang Y, Wu Q, Zhan Z, Li L, He N, Shrestha R (2015) An experimental study on milling of high-volume fraction SiCP/Al composites with PCD tools of different grain size. Int J Adv Manuf Technol 79(9–12):1699–1705CrossRefGoogle Scholar
  16. 16.
    Muthukrishnan N, Murugan M, Rao KP (2008) An investigation on the machinability of Al-SiC metal matrix composites using pcd inserts. Int J Adv Manuf Technol 38(5–6):447–454CrossRefGoogle Scholar
  17. 17.
    Zhong ZW, Lin G (2006) Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles. Int J Adv Manuf Technol 27(11–12):1077–1081CrossRefGoogle Scholar
  18. 18.
    Kawalec M, Przestacki D, Bartkowiak K, Jankowiak M, (2008) Laser assisted machining of aluminium composite reinforced by SiC particle. Proceedings of the 27th International Congress on Applications of Lasers & Electro-Optics (ICALEO 2008), Temecula, California, USA: 895–900Google Scholar
  19. 19.
    Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48(15):1613–1625CrossRefGoogle Scholar
  20. 20.
    Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives, Industrial press IncGoogle Scholar
  21. 21.
    Suresh Kumar Reddy N, Kwang-Sup S, Yang M (2008) Experimental study of surface integrity during end milling of Al/SiC particulate metal–matrix composites. J Mater Process Technol 201(1–3):574–579CrossRefGoogle Scholar
  22. 22.
    Wang T, Xie LJ, Wang XB, Jiao L, Shen JW, Xu H, Nie FM (2013) Surface integrity of high speed milling of Al/SiC/65p aluminum matrix composites. Procedia CIRP 8:475–480CrossRefGoogle Scholar
  23. 23.
    Aurich JC, Zimmermann M, Schindler S, Steinmann P (2016) Turning of aluminum metal matrix composites: influence of the reinforcement and the cutting condition on the surface layer of the workpiece. Adv Manuf 4(3):225–236CrossRefGoogle Scholar
  24. 24.
    Schubert A, Nestler A, Mehner T (2012) Influencing the residual stresses in the surface layer by use of appropriate cutting parameters and tool geometries in turning of aluminium matrix composites. Materialwiss Werkst 43(7):648–655CrossRefGoogle Scholar
  25. 25.
    Dabade UA, Joshi SS, Balasubramaniam R, Bhanuprasad VV (2007) Surface finish and integrity of machined surfaces on Al/SiCp composites. J Mater Process Technol 192–193:166–174CrossRefGoogle Scholar
  26. 26.
    Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–54CrossRefGoogle Scholar
  27. 27.
    Navas VG, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57CrossRefGoogle Scholar
  28. 28.
    Tang ZT, Liu ZQ, Pan YZ, Wan Y, Ai X (2009) The influence of tool flank wear on residual stresses induced by milling aluminum alloy. J Mater Process Technol 209(9):4502–4508CrossRefGoogle Scholar
  29. 29.
    Li W, Withers PJ, Axinte D, Preuss M, Andrews P (2009) Residual stresses in face finish turning of high strength nickel-based superalloy. J Mater Process Technol 209(10):4896–4902CrossRefGoogle Scholar
  30. 30.
    Madariaga A, Esnaola JA, Fernandez E, Arrazola PJ, Garay A, Morel F (2014) Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int J Adv Manuf Technol 71(9):1587–1598CrossRefGoogle Scholar
  31. 31.
    Geng J, Liu G, Wang F, Hong T, Dai J, Wang M, Chen D, Ma N, Wang H (2017) Microstructural correlated damage mechanisms of the high-cycle fatigued in-situ TiB2/Al-Cu-Mg composite. Mater Des 135:423–438CrossRefGoogle Scholar
  32. 32.
    Geng J, Hong T, Ma Y, Wang M, Chen D, Ma N, Wang H (2016) The solution treatment of in-situ sub-micron TiB2/2024 Al composite. Mater Des 98:186–193CrossRefGoogle Scholar
  33. 33.
    Tang Y, Chen Z, Borbély A, Ji G, Zhong SY, Schryvers D, Ji V, Wang HW (2015) Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy. Mater Charact 102:131–136CrossRefGoogle Scholar
  34. 34.
    Sharman ARC, Hughes JI, Ridgway K (2015) The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718™. J Mater Process Technol 216:123–132CrossRefGoogle Scholar
  35. 35.
    Liu M, Takagi J-I, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150(3):234–241CrossRefGoogle Scholar
  36. 36.
    Chou YK, Song H (2004) Tool nose radius effects on finish hard turning. J Mater Process Technol 148(2):259–268CrossRefGoogle Scholar
  37. 37.
    Ulutan D, Arisoy YM, Özel T, Mears L (2014) Empirical modeling of residual stress profile in machining nickel-based superalloys using the sinusoidal decay function. Procedia CIRP 13:365–370CrossRefGoogle Scholar
  38. 38.
    Wang J, Huang CZ, Song WG (2003) The effect of tool flank wear on the orthogonal cutting process and its practical implications. J Mater Process Technol 142(2):338–346CrossRefGoogle Scholar
  39. 39.
    Davim JP (2010) Surface integrity in machining. Springer, LondonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Kunyang Lin
    • 1
  • Wenhu Wang
    • 1
  • Ruisong Jiang
    • 1
    Email author
  • Yifeng Xiong
    • 1
  1. 1.The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of EducationNorthwestern Polytechnical UniversityXianPeople’s Republic of China

Personalised recommendations