Advertisement

Machinability study of unidirectional CFRP laminates by slot milling

  • Jianbo SuiEmail author
  • Chengyong Wang
ORIGINAL ARTICLE
  • 90 Downloads

Abstract

Slot milling of unidirectional carbon fiber reinforced polymer (CFRP) laminates in four directions relative to fiber orientation is conducted to effectively study the machinability of CFRP composites with respect to process parameters and fiber orientation angle (relative to cutting speed) simultaneously and fiber orientation angle can vary from 0 to 180 continuously. First, slot milling experiments with a full factorial design are conducted to include all fiber orientation angles from 0 to 180. Then, the cutting forces with respect to fiber orientation angle and chip thickness are decoupled and results are analyzed. The results show that both fiber orientation angle and chip thickness have significant effect on cutting forces and the specific cutting forces with respect to chip thickness are governed by power law for fiber orientation angle lower than 135.

Keywords

Slot milling Fiber orientation angle Tangential force Normal force Specific cutting force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Che D, Saxena I, Han P, Guo P, Ehmann KF (2014) Machining of carbon fiber reinforced plastics/polymers: a literature review. J Manuf Sci Eng 136(3):034001.  https://doi.org/10.1115/1.4026526 CrossRefGoogle Scholar
  2. 2.
    Nassar MMA, Arunachalam R, Alzebdeh KI (2017) Machinability of natural fiber reinforced composites: a review. Int J Adv Manuf Technol 88(9):2985.  https://doi.org/10.1007/s00170-016-9010-9 CrossRefGoogle Scholar
  3. 3.
    Abrao A, Faria P, Rubio JC, Reis P, Davim JP (2007) Drilling of fiber reinforced plastics: a review. J Mater Process Technol 186(1):1.  https://doi.org/10.1016/j.jmatprotec.2006.11.146. http://www.sciencedirect.com/science/article/pii/S092401360601137X CrossRefGoogle Scholar
  4. 4.
    Koplev A, Lystrup A, Vorm T (1983) The cutting process, chips, and cutting forces in machining CFRP. Composites 14(4):371.  https://doi.org/10.1016/0010-4361(83)90157-X. http://www.sciencedirect.com/science/article/pii/001043618390157X CrossRefGoogle Scholar
  5. 5.
    Bhatnagar N, Ramakrishnan N, Naik N, Komanduri R (1995) On the machining of fiber reinforced plastic (FRP) composite laminates. Int J Mach Tools Manuf 35(5):701.  https://doi.org/10.1016/0890-6955(95)93039-9. http://www.sciencedirect.com/science/article/pii/0890695595930399 CrossRefGoogle Scholar
  6. 6.
    Wang D, Ramulu M, Arola D (1995) Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate. Int J Mach Tools Manuf 35(12):1623.  https://doi.org/10.1016/0890-6955(95)00014-O. http://www.sciencedirect.com/science/article/pii/089069559500014O CrossRefGoogle Scholar
  7. 7.
    Wang D, Ramulu M, Arola D (1995) Orthogonal cutting mechanisms of graphite/epoxy composite. Part II: multi-directional laminate. Int J Mach Tools Manuf 35(12):1639.  https://doi.org/10.1016/0890-6955(95)00015-P. http://www.sciencedirect.com/science/article/pii/089069559500015P CrossRefGoogle Scholar
  8. 8.
    Ramulu M (1997) Machining and surface integrity of fibre-reinforced plastic composites. Sadhana 22(3):449.  https://doi.org/10.1007/BF02744483 CrossRefGoogle Scholar
  9. 9.
    Jia Z, Su Y, Niu B, Zhang B, Wang F (2016) The interaction between the cutting force and induced sub-surface damage in machining of carbon fiber-reinforced plastics. J Reinf Plast Compos 35(9):712.  https://doi.org/10.1177/0731684415626284 CrossRefGoogle Scholar
  10. 10.
    Zhang L, Zhang HJ, Wang XM (2001) A force prediction model for cutting unidirectional fibre-reinforced plastics. Mach Sci Technol 5(3):293.  https://doi.org/10.1081/MST-100108616 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhang L (2009) Cutting composites: a discussion on mechanics modelling. J Mater Process Technol 209 (9):4548.  https://doi.org/10.1016/j.jmatprotec.2008.10.023. http://www.sciencedirect.com/science/article/pii/S0924013608007942 CrossRefGoogle Scholar
  12. 12.
    Qi Z, Zhang K, Cheng H, Wang D, Meng Q (2015) Microscopic mechanism based force prediction in orthogonal cutting of unidirectional CFRP. Int J Adv Manuf Technol 79(5):1209.  https://doi.org/10.1007/s00170-015-6895-7 CrossRefGoogle Scholar
  13. 13.
    Li H, Qin X, He G, Price MA, Jin Y, Sun D (2017) An energy based force prediction method for UD-CFRP orthogonal machining. Compos Struct 159:34.  https://doi.org/10.1016/j.compstruct.2016.09.051. http://www.sciencedirect.com/science/article/pii/S0263822316318888 CrossRefGoogle Scholar
  14. 14.
    Jahromi AS, Bahr B (2010) An analytical method for predicting cutting forces in orthogonal machining of unidirectional composites. Compos Sci Technol 70(16):2290.  https://doi.org/10.1016/j.compscitech.2010.09.005. http://www.sciencedirect.com/science/article/pii/S0266353810003507 CrossRefGoogle Scholar
  15. 15.
    Lasri L, Nouari M, Mansori ME (2008) Working parameters effects on machining-induced damage of fibre-reinforced composites: numerical simulation analysis. Int J Mater Prod Technol 32(2-3):136.  https://doi.org/10.1504/IJMPT.2008.018977. http://www.inderscienceonline.com/doi/abs/10.1504/IJMPT.2008.018977 Google Scholar
  16. 16.
    Lasri L, Nouari M, Mansori ME (2009) Modelling of chip separation in machining unidirectional {FRP} composites by stiffness degradation concept. Compos Sci Technol 69(5):684.  https://doi.org/10.1016/j.compscitech.2009.01.004. http://www.sciencedirect.com/science/article/pii/S0266353809000062 CrossRefGoogle Scholar
  17. 17.
    Zenia S, Ben Ayed L, Nouari M, Delamézière A (2015) Numerical prediction of the chip formation process and induced damage during the machining of carbon/epoxy composites. Int J Adv Manuf Technol 78(1):465.  https://doi.org/10.1007/s00170-014-6600-2  https://doi.org/10.1007/s00170-014-6600-2 CrossRefGoogle Scholar
  18. 18.
    Zenia S, Ayed LB, Nouari M, Delameziere A (2015) Numerical prediction of the chip formation process and induced damage during the machining of carbon/epoxy composites. International Journal of Mechanical Sciences 90:89.  https://doi.org/10.1016/j.ijmecsci.2014.10.018. http://www.sciencedirect.com/science/article/pii/S0020740314003543 CrossRefGoogle Scholar
  19. 19.
    Dandekar CR, Shin YC (2008) Multiphase finite element modeling of machining unidirectional composites: prediction of debonding and fiber damage. J Manuf Sci Eng 130(5):051016.  https://doi.org/10.1115/1.2976146 CrossRefGoogle Scholar
  20. 20.
    Arola D, Ramulu M (1997) Orthogonal cutting of fiber-reinforced composites: a finite element analysis. Int J Mech Sci 39(5):597.  https://doi.org/10.1016/S0020-7403(96)00061-6. http://www.sciencedirect.com/science/article/pii/S0020740396000616 CrossRefzbMATHGoogle Scholar
  21. 21.
    Santiuste C, Olmedo A, Soldani X, Miguélez H (2012) Delamination prediction in orthogonal machining of carbon long fiber-reinforced polymer composites. J Reinf Plast Compos 31(13):875.  https://doi.org/10.1177/0731684412444654. http://jrp.sagepub.com/content/31/13/875.abstract CrossRefGoogle Scholar
  22. 22.
    Sheikh-Ahmad J, Yadav R (2008) Model for predicting cutting forces in machining CFRP. Int J Mater Prod Technol 32(2-3):152.  https://doi.org/10.1504/IJMPT.2008.018978. http://www.inderscienceonline.com/doi/abs/10.1504/IJMPT.2008.018978 CrossRefGoogle Scholar
  23. 23.
    Karpat Y, Bahtiyar O, Deger B (2012) Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates. Int J Mach Tool Manuf 56:79.  https://doi.org/10.1016/j.ijmachtools.2012.01.001. http://www.sciencedirect.com/science/article/pii/S0890695512000028 CrossRefGoogle Scholar
  24. 24.
    Karpat Y, Bahtiyar O, Deger B (2012) Milling Force modelling of multidirectional carbon fiber reinforced polymer laminates. Procedia CIRP 1:460.  https://doi.org/10.1016/j.procir.2012.04.082. http://www.sciencedirect.com/science/article/pii/S2212827112000832 CrossRefGoogle Scholar
  25. 25.
    Lopresto V, Caggiano A, Teti R (2016) High performance cutting of fibre reinforced plastic composite materials. Procedia {CIRP} 46:71.  https://doi.org/10.1016/j.procir.2016.05.079. http://www.sciencedirect.com/science/article/pii/S2212827116305546. 7th {HPC} 2016 {CIRP} Conference on High Performance CuttingCrossRefGoogle Scholar
  26. 26.
    An Q, Ming W, Cai X, Chen M (2015) Study on the cutting mechanics characteristics of high-strength UD-CFRP laminates based on orthogonal cutting method. Composite Structures 131:374.  https://doi.org/10.1016/j.compstruct.2015.05.035. http://www.sciencedirect.com/science/article/pii/S0263822315004006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringGuangdong University of TechnologyGuangzhouChina

Personalised recommendations