Advertisement

Fatigue resistance of AL6XN super-austenitic stainless steel welded with electromagnetic interaction of low intensity during GMAW

  • I. S. Cortés-Cervantes
  • V. H. López-Morelos
  • Y. Miyashita
  • R. García-Hernández
  • A. Ruiz-Marines
  • M. A. Garcia-Renteria
ORIGINAL ARTICLE
  • 24 Downloads

Abstract

Plates of AL6XN super-austenitic stainless steel with a single-V groove preparation were gas metal arc welded (GMAW) with and without electromagnetic interaction of low intensity (EMILI) during welding using an ER-NiCrMo3 filler wire and 97% Ar + 3% N2 as shielding gas. The fatigue behavior of the welded joints was evaluated under constant stress amplitude (Δσ/2) between 135 and 170 MPa (R = 0.1) and uniaxial load. The Wöhler diagram indicated that for stress amplitude of 170 MPa, 4.19 × 105 and 2.96 × 105 cycles were required for failure without and with EMILI, respectively, whereas for 135, 140, and 145 MPa, 1 × 107 cycles were reached without failure. Welding with EMILI was found to have a positive effect nearby fatigue limit. Observation of the fractures indicates that failures started on the surface of the specimens in the weld metal (WM) due to the stress concentration induced by the abundant presence of precipitates located along the interdendritic spaces in this zone of the welded joint. These particles acted as crack-nucleating agents and then the crack propagated throughout the WM. Fractography revealed brittle fracture associated to cleavage.

Keywords

AL6XN super austenitic stainless steel Fatigue resistance Electromagnetic interaction of low intensity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

ISCC thanks CONACyT-México for the scholarship provided.

Funding information

Funding was provided by CIC-UMSNH and PIFI-SEP México.

References

  1. 1.
    Allegheny Technologies Incorporated (2010) AL-6XN Alloy. 4 edn. ATI, Pittsburgh U.S.AGoogle Scholar
  2. 2.
    García C, Martin F, Tiedra PD, Blanco Y, López M (2008) Pitting corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell. Corros Sci 50:1184–1194CrossRefGoogle Scholar
  3. 3.
    Ĉíhal V, Kašová I (1970) Relation between carbide precipitation and intercrystalline corrosion of stainless steels. Corros Sci 10(12):875–881.  https://doi.org/10.1016/S0010-938X(70)80106-8 CrossRefGoogle Scholar
  4. 4.
    Hall EL, Briant CL (1984) Chromium depletion in the vicinity of carbides in sensitized austenitic stainless steels. Metall Trans A 15(5):793–811.  https://doi.org/10.1007/BF02644554 CrossRefGoogle Scholar
  5. 5.
    Was GS, Kruger RM (1985) A thermodynamic and kinetic basis for understanding chromium depletion in Ni-Cr-Fe alloys. Acta Metall 33(5):841–854.  https://doi.org/10.1016/0001-6160(85)90108-7 CrossRefGoogle Scholar
  6. 6.
    Kusko CS, Dupont JN, Merder AR (2004) The influence of microstructure on fatigue crack propagation behavior of stainless steel welds. Weld J 83(1):6–14Google Scholar
  7. 7.
    Van Der Schaaf B, De Vries MI (1987) Fatigue and crack growth properties of type 316 steel for fusion applications. Radiat Eff 101(1–4):173–187.  https://doi.org/10.1080/00337578708224746 CrossRefGoogle Scholar
  8. 8.
    Anburaj J, Nazirudeen SSM, Narayanan R, Anandavel B, Chandrasekar A (2012) Ageing of forged superaustenitic stainless steel: precipitate phases and mechanical properties. Mater Sci Eng A 535(0):99–107.  https://doi.org/10.1016/j.msea.2011.12.048 CrossRefGoogle Scholar
  9. 9.
    Lewis AC, Bingert JF, Rowenhorst DJ, Gupta A, Geltmacher AB, Spanos G (2006) Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mater Sci Eng A 418(1–2):11–18.  https://doi.org/10.1016/j.msea.2005.09.088 CrossRefGoogle Scholar
  10. 10.
    Toppo A, Kaul R, Pujar MG, Kamachi Mudali U, Kukreja LM (2013) Enhancement of corrosion resistance of type 304 stainless steel through a novel thermo-mechanical surface treatment. J Mater Eng Perform 22(2):632–639.  https://doi.org/10.1007/s11665-012-0304-2 CrossRefGoogle Scholar
  11. 11.
    Kokawa H (2005) Weld decay-resistant austenitic stainless steel by grain boundary engineering. J Mater Sci 40(4):927–932.  https://doi.org/10.1007/s10853-005-6511-6 CrossRefGoogle Scholar
  12. 12.
    Kina AY, Souza V, Tavares S, Souza J, de Abreu H (2008) Influence of heat treatments on the intergranular corrosion resistance of the AISI 347 cast and weld metal for high temperature services. J Mater Process Technol 199(1):391–395CrossRefGoogle Scholar
  13. 13.
    Curiel FF, García R, López VH, García MA, Lemus J (2012) Transmission electron microscopy in the heat affected zone of an AISI 304 austenitic stainless steel welded with the application of a magnetic field of low intensity. Mater Trans 54(1):122–125CrossRefGoogle Scholar
  14. 14.
    Curiel FF, García R, Lopez VH, Gonzáles-Sánchez J (2011) Enhancing corrosion resistance of 304 stainless steel GMA welds with electromagnetic interaction. Mater Trans 53(8):1701–1704.  https://doi.org/10.2320/matertrans.M2011087 CrossRefGoogle Scholar
  15. 15.
    Curiel FF, García R, López VH, González J (2011) Effect of magnetic field applied during gas metal arc welding on the resistance to localised corrosion of the heat affected zone in AISI 304 stainless steel. Corros Sci 53(7):2393–2399.  https://doi.org/10.1016/j.corsci.2011.03.022 CrossRefGoogle Scholar
  16. 16.
    García R, Cortes R, García DL, López VH (2015) Effect of the perpendicular electromagnetic field in the 304 austenitic stainless steel welding in a single pass. In: Pérez Campos R, Contreras Cuevas A, Esparza Muñoz R (eds) Materials characterization. Springer International Publishing, Cham, pp 119–127.  https://doi.org/10.1007/978-3-319-15204-2_12 CrossRefGoogle Scholar
  17. 17.
    García-Rentería M, López-Morelos V, García-Hernández R, Bedolla-Becerril E, González-Sánchez JA (2015) Electrochemical characterization of AISI 2205 duplex stainless steel welded joints with electromagnetic interaction. Procedia Mater Sci 8:950–958.  https://doi.org/10.1016/j.mspro.2015.04.156 CrossRefGoogle Scholar
  18. 18.
    García-Rentería M, López-Morelos V, García-Hernández R, Dzib-Pérez L, García-Ochoa E, González-Sánchez J (2014) Improvement of localised corrosion resistance of AISI 2205 duplex stainless steel joints made by gas metal arc welding under electromagnetic interaction of low intensity. Appl Surf Sci 321:252–260CrossRefGoogle Scholar
  19. 19.
    García-Rentería MA, López-Morelos VH, García-Hernández R, Dzib-Pérez L, González-Sánchez J, Curiel-López FF (2017) Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on corrosion resistance. Appl Surf Sci 396:1187–1200.  https://doi.org/10.1016/j.apsusc.2016.11.109 CrossRefGoogle Scholar
  20. 20.
    J. C. Villafuerte, Kerr HW (1990) Electromagnetic stirring and grain refinement in stainless steel GTA welds. Weld J 69(1):1–13Google Scholar
  21. 21.
    M. Malinowski, G. D. Ouden, Vink JP (1990) Effect of electromagnetic stirring on GTA welds in austenitic stainless steel. Weld J 2(2):52–59Google Scholar
  22. 22.
    Matsuda F, Nakagawa H, Nakata K, Ayani R (1978) Effect of electromagnetic stirring on weld solidification structure of aluminum alloys (report I) : investigation on GTA weld metal of thin sheet. Trans JWRI 7(1):111–127Google Scholar
  23. 23.
    Campbell FC (2012) Fatigue of weldments. In: Fatigue and Fracture (understanding the basics). First edn. ASM International, pp 401–425Google Scholar
  24. 24.
    Puchi-Cabrera E, Saya-Gamboa R, La Barbera-Sosa J, Staia M, Ignoto-Cardinale V, Berríos-Ortiz J, Mesmacque G (2009) Fatigue life of AISI 316L stainless steel welded joints, obtained by GMAW. Weld Int 23(10):778–788CrossRefGoogle Scholar
  25. 25.
    Metrovich B, Fisher JW, Yen BT, Kaufmann EJ, Cheng X, Ma Z (2003) Fatigue strength of welded AL-6XN superaustenitic stainless steel. Int J Fatigue 25(9–11):1309–1315.  https://doi.org/10.1016/S0142-1123(03)00123-3 CrossRefGoogle Scholar
  26. 26.
    Kalnaus S, Fan F, Vasudevan AK, Jiang Y (2008) An experimental investigation on fatigue crack growth of AL6XN stainless steel. Eng Fract Mech 75(8):2002–2019.  https://doi.org/10.1016/j.engfracmech.2007.11.002 CrossRefGoogle Scholar
  27. 27.
    Yun J-G, Ma C-Q, Yi J-J, Li X-W (2012) Qualitative and quantitative characterizations of fracture surfaces of AL6XN super-austenitic stainless steel fatigued at different stress amplitudes. Prog Nat Sci: Mater Int 22(1):48–52.  https://doi.org/10.1016/j.pnsc.2011.12.008 CrossRefGoogle Scholar
  28. 28.
    Briones Flores R, Ruiz Marines A, Rubio Gonzalez C, Carreon Garcidueñas H (2013) Caracterización microestructural y mecánica de una soldadura disímil de aceros inoxidables 316L/AL-6XN. Rev LatinAm Metal Mat 34(2):306–315Google Scholar
  29. 29.
    Sathiya P, Abdul Jaleel MY (2011) Influence of shielding gas mixtures on bead profile and microstructural characteristics of super austenitic stainless steel weldments by laser welding. Int J Adv Manuf Technol 54(5):525–535.  https://doi.org/10.1007/s00170-010-2967-x CrossRefGoogle Scholar
  30. 30.
    BSI, BS 7608 (1993) Code of practice for fatigue design and assessment of steel structures.Google Scholar
  31. 31.
    ASTM E466-04, Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials, ASTM International, West Conshohocken, PA, 2004, https://www.astm.org
  32. 32.
    Dehmolaei R, Shamanian M, Kermanpur A (2008) Effect of electromagnetic vibration on the unmixed zone formation in 25Cr–35Ni heat resistant steel/alloy 800 dissimilar welds. Mater Charact 59(12):1814–1817.  https://doi.org/10.1016/j.matchar.2008.05.003 CrossRefGoogle Scholar
  33. 33.
    Cui Y, Xu CL, Han Q (2006) Effect of ultrasonic vibration on unmixed zone formation. Scr Mater 55(11):975–978.  https://doi.org/10.1016/j.scriptamat.2006.08.035 CrossRefGoogle Scholar
  34. 34.
    Banovic SW, DuPont IN, Marder AR (2001) Dilution control in gas-tungsten-arc welds involving superaustenitic stainless steels and nickel-based alloys. Metall Mater Trans B 32(6):1171–1176.  https://doi.org/10.1007/s11663-001-0104-9 CrossRefGoogle Scholar
  35. 35.
    Abdel Rahman MS, Abdel Raheem NA, El Koussy MR (2014) Effect of heat input on the microstructure and properties of dissimilar weld joint between Incoloy 28 and superaustenitic stainless steel. Acta Metall Sin-Engl 27(2):259–266.  https://doi.org/10.1007/s40195-014-0058-y CrossRefGoogle Scholar
  36. 36.
    Ahmadi M, Mirsalehi SE (2015) Investigation on microstructure, mechanical properties and corrosion behavior of AISI 316L stainless steel to ASTM A335-P11 low alloy steel dissimilar welding joints. Mater High Temp 32(6):627–635.  https://doi.org/10.1179/1878641315Y.0000000009 CrossRefGoogle Scholar
  37. 37.
    Lippold JC, Kotecki DJ (2006) Welding metallurgy and weldability of stainless steels. Jhon Wiley & Sons, HobokenGoogle Scholar
  38. 38.
    Cieslak MJ, Headley TJ, Romig AD, Kollie T (1988) A melting and solidification study of alloy 625. Metall Trans A 19(9):2319–2331.  https://doi.org/10.1007/BF02645056 CrossRefGoogle Scholar
  39. 39.
    Silva CC, Miranda HCD, Motta MF, Farias JP, Afonso CRM, Ramirez AJ (2013) New insight on the solidification path of an alloy 625 weld overlay. J Mater Res Technol 2(3):228–237.  https://doi.org/10.1016/j.jmrt.2013.02.008 CrossRefGoogle Scholar
  40. 40.
    Xu F, Lv Y, Liu Y, Shu F, He P, Xu B (2013) Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process. J Mater Sci Technol 29(5):480–488.  https://doi.org/10.1016/j.jmst.2013.02.010 CrossRefGoogle Scholar
  41. 41.
    DuPont JN (1996) Solidification of an alloy 625 weld overlay. Metall Mater Trans A 27(11):3612–3620.  https://doi.org/10.1007/BF02595452 CrossRefGoogle Scholar
  42. 42.
    Floreen S, Fuchs GE, Yang JW (1994) The metallurgy of alloy 625. In: Loria EA (ed) Superalloys 718,625, 706 and various derivatives. The Minerals, Metals and Materials Society, Warrendale, pp 13–37CrossRefGoogle Scholar
  43. 43.
    Sivaprasad K, Raman SGS (2007) Influence of magnetic arc oscillation and current pulsing on fatigue behavior of alloy 718 TIG weldments. Mater Sci Eng A 448(1):120–127.  https://doi.org/10.1016/j.msea.2006.10.048 CrossRefGoogle Scholar
  44. 44.
    Sundaresan S, Ram GDJ (1999) Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α–β titanium alloys. Sci Technol Weld Join 4(3):151–160.  https://doi.org/10.1179/136217199101537699 CrossRefGoogle Scholar
  45. 45.
    Mousavi MG, Hermans MJM, Richardson IM, den Ouden G (2003) Grain refinement due to grain detachment in electromagnetically stirred AA7020 welds. Sci Technol Weld Join 8(4):309–312.  https://doi.org/10.1179/136217103225005462 CrossRefGoogle Scholar
  46. 46.
    Campanella T, Charbon C, Rappaz M (2004) Grain refinement induced by electromagnetic stirring: a dendrite fragmentation criterion. Metall Mater Trans A 35(10):3201–3210.  https://doi.org/10.1007/s11661-004-0064-1 CrossRefGoogle Scholar
  47. 47.
    Schijve J (2009) Fatigue of welded joints. Fatigue of Structures and Materials:535–557. Springer, Dordrecht, second edn,  https://doi.org/10.1007/978-1-4020-6808-9 zbMATHGoogle Scholar
  48. 48.
    Bloem CA, Salvador MD, Amigó V, Vicente A (2009) Fatigue behaviour of GMAW welded aluminium alloy AA7020. Weld Int 23(10):773–777.  https://doi.org/10.1080/09507110902843321 CrossRefGoogle Scholar
  49. 49.
    Lukáš P, Kunz L (2003) Small cracks—nucleation, growth and implication to fatigue life. Int J Fatigue 25(9–11):855–862.  https://doi.org/10.1016/S0142-1123(03)00133-6 CrossRefGoogle Scholar
  50. 50.
    Polák J, Man J (2014) Mechanisms of extrusion and intrusion formation in fatigued crystalline materials. Mater Sci Eng A 596:15–24.  https://doi.org/10.1016/j.msea.2013.12.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • I. S. Cortés-Cervantes
    • 1
  • V. H. López-Morelos
    • 1
  • Y. Miyashita
    • 2
  • R. García-Hernández
    • 1
  • A. Ruiz-Marines
    • 1
  • M. A. Garcia-Renteria
    • 3
  1. 1.Instituto de Investigación en Metalurgia y MaterialesUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Department of Mechanical EngineeringNagaoka University of TechnologyNagaokaJapan
  3. 3.Facultad de MetalurgiaUniversidad Autónoma de CoahuilaMonclovaMexico

Personalised recommendations