Skip to main content
Log in

Thermal error modeling of spindle based on the principal component analysis considering temperature-changing process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermal error is one of the most significant factors that influence the machining accuracy. Thermal error compensation is an easy and economical way to reduce the thermal error. However, the effectiveness of compensation is highly dependent on the thermal error model. In this paper, the thermal characteristics of the spindle of a horizontal machining center are investigated and tested. The measured temperature changes during a period of time are reconstructed based on PCA and used as the new input variables rather than discrete temperatures collected at some certain moments for axial spindle thermal error modeling. By comparing with the thermal error model built on original temperature data, it finds out that the accuracy of spindle thermal error modeling and prediction are improve by adopting PCA for data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Zhao W, Lan S, Ni J, Wu W, Lu B (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tool Manu 95:20–38

    Article  Google Scholar 

  2. Li JW, Zhang WJ, Yang GS, Tu SD, Chen XB (2009) Thermal-error modeling for complex physical systems: the-state-of-arts review. Int J Adv Manuf Technol 42(1–2):168–179

    Article  Google Scholar 

  3. Blaser P, Pavliček F, Mori K, Mayr J, Weikert S, Wegener K (2017) Adaptive learning control for thermal error compensation of 5-axis machine tools. J Manuf Syst 44:302–309

    Article  Google Scholar 

  4. Zhu J, Ni J, Shih AJ (2008) Robust machine tool thermal error modeling through thermal mode concept. J Manuf Sci Eng 130(6):763–771

    Article  Google Scholar 

  5. Yang H (2003) Dynamic modeling for machine tool thermal error compensation. J Manuf Sci Eng 125(2):245–254

    Article  Google Scholar 

  6. Li Y Zhao W (2012) Axial thermal error compensation method for the spindle of a precision horizontal machining center. In International Conference on Mechatronics and Automation

  7. Chen J-S (1996) A study of thermally induced machine tool errors in real cutting conditions. Int J Mach Tools Manuf 36(12):1401–1411

    Article  Google Scholar 

  8. Li S, Zhang Y, Zhang G (1997) A study of pre-compensation for thermal errors of NC machine tools. Int J Mach Tool Manu 37(12):1715–1719

    Article  Google Scholar 

  9. Wu CW, Tang CH, Chang CF, Shiao YS (2012) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5–8):681–689

    Article  Google Scholar 

  10. Zhang T, Ye W, Shan Y (2015) Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool. Int J Adv Manuf Technol 85(9–12):1–11

    Google Scholar 

  11. Li Y, Zhao W, Wu W, Lu B, Chen Y (2014) Thermal error modeling of the spindle based on multiple variables for the precision machine tool. Int J Adv Manuf Technol 72(9–12):1415–1427

    Article  Google Scholar 

  12. Ma C et al (2016) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol:1–15

  13. Yang Z, Sun M, Li W, Liang W (2011) Modified Elman network for thermal deformation compensation modeling in machine tools. Int J Adv Manuf Technol 54(5–8):669–676

    Article  Google Scholar 

  14. Zhang Y, Yang J, Jiang H (2012) Machine tool thermal error modeling and prediction by grey neural network. Int J Adv Manuf Technol 59(9–12):1065–1072

    Article  Google Scholar 

  15. Abdulshahed AM, Longstaff AP, Fletcher S, Potdar A (2016) Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model. J Manuf Syst 41:130–142

    Article  Google Scholar 

  16. Roweis S (1997) EM algorithms for PCA and SPCA. Adv Neural Inf Proces Syst 10:626–632

    Google Scholar 

  17. Bakshi BR (1998) Multiscale PCA with application to multivariate statistical process monitoring. AICHE J 44(7):1596–1610

    Article  Google Scholar 

Download references

Funding

It is gratefully acknowledged that the work has been supported the National Science and Technology Major Project of China (2014ZX04014021) and the National Natural Science Foundation of China (51705402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanhua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wei, W., Su, D. et al. Thermal error modeling of spindle based on the principal component analysis considering temperature-changing process. Int J Adv Manuf Technol 99, 1341–1349 (2018). https://doi.org/10.1007/s00170-018-2482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2482-z

Keywords

Navigation