Advertisement

Study on optimal independent variables for the thermal error model of CNC machine tools

ORIGINAL ARTICLE

Abstract

In the technology of thermal error compensation for CNC machine tools, it is particularly important to select modeling variables which can stably reflect the relationship between temperature field and thermal expansion in terms of modeling. This paper analyzes the theories and experiments on the thermal properties of the temperature-sensitive points distributed on one-dimension pole. It is found that the prediction model performs better in prediction accuracy and robustness when established with linear points as independent variables than with nonlinear ones. However, because of the complicated structure of machine tools, it is rather hard to fix the positions of linear points, which consequently lead to the proposal of a comprehensive temperature-feature extraction method that uses feature extraction algorithm and weight optimization to construct linear temperature-sensitive points. Experimental facilities verified the feasibility of its proposal. What’s more, based on the effectiveness of building linear measuring points, it is proposed to arrange the temperature sensors along the deforming direction. With the feeding system of a gantry machine tool as the testing platform, the thermal error model established according to the proposed method is actually tested under different working conditions. The result shows this proposed method has higher prediction precision and robustness.

Keywords

CNC machine tool Temperature-sensitive point Thermal error Model variable Thermal properties Feature extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This study is supported by the National Natural Science Foundation of China (no. 51375382) and the Science and Technology Support Plan Project of Sichuan Province, China (no. 2016GZ0205).

References

  1. 1.
    Bryan J (1990) International status of thermal error research. CIRP Ann Manuf Technol 39:645–656CrossRefGoogle Scholar
  2. 2.
    Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284CrossRefGoogle Scholar
  3. 3.
    Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791CrossRefGoogle Scholar
  4. 4.
    Attia MH, Fraser S (1999) A generalized modelling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures. Int J Mach Tools Manuf 39(6):1001–1016CrossRefGoogle Scholar
  5. 5.
    Lo CH, Yuan J, Ni J (1999) Optimal temperature variable selection by grouping approach for thermal error modeling and compensation. Int J Mach Tools Manuf 39(9):1383–1396CrossRefGoogle Scholar
  6. 6.
    Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127CrossRefGoogle Scholar
  7. 7.
    Lee JH, Yang SH (2002) Statistical optimization and assessment of a thermal error model for CNC machine tools. Int J Mach Tools Manuf 42(1):147–155CrossRefGoogle Scholar
  8. 8.
    Guo Q, Xu R, Yang T, He L, Cheng X, Li Z, Yang JG (2015) Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools. Int J Adv Manuf Technol 83(5–8):995–1002Google Scholar
  9. 9.
    Yao X, Fu J, Xu Y, He Y (2013) Synthetic error modeling for NC machine tools based on intelligent technology. Procedia CIRP 10:91–97CrossRefGoogle Scholar
  10. 10.
    Zhang T, Ye W, Shan Y (2015) Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool. Int J Adv Manuf Technol 85(9–12):2761–2771Google Scholar
  11. 11.
    Yan JY, Yang JG (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132CrossRefGoogle Scholar
  12. 12.
    Miao E, Liu Y, Liu H, Gao Z, Li W (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Mach Tools Manuf 97:50–59CrossRefGoogle Scholar
  13. 13.
    Zhang CX, Gao F, Meng ZH, Zhao BH, Li Y (2015) A novel linear virtual temperature constructing method for thermal error modeling of machine tools. Int J Adv Manuf Technol 80(9–12):1965–1973CrossRefGoogle Scholar
  14. 14.
    Wang L, Wang H, Li T (2015) A hybrid thermal error modeling method of heavy machine tools in z–axis. Int J Adv Manuf Technol 80(1–4):389–400CrossRefGoogle Scholar
  15. 15.
    Ramesh R, Mannan MA, Poo AN, Keerthi SS (2003) Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian network—support vector machine model. Int J Mach Tools Manuf 43:405–419CrossRefGoogle Scholar
  16. 16.
    Yang JG, Fan KG (2013) Research on the thermal deformation pseudo-lag and real-time compensation for CNC machine tool spindle. J Mech Eng 49(23):129–135CrossRefGoogle Scholar
  17. 17.
    Xia JY, Hu YM, Wu B, Shi TL (2008) Analysis of the thermal dynamic characteristic of machine tools based on unidimensional heat transfer. Mechanical Sci Technol Aeros Eng 27(10):1121–1126Google Scholar
  18. 18.
    Yang H, Ni J (2003) Dynamic modeling for machine tool thermal error compensation. J Manuf Sci Eng 125(2):245–254CrossRefGoogle Scholar
  19. 19.
    Liu Q, Yan J, Pham DT, Zhou Z, Xu W, Wei Q, Ji C (2016) Identification and optimal selection of temperature-sensitive measuring points of thermal error compensation on a heavy-duty machine tool. Int J Adv Manuf Technol 85(1–4):345–353CrossRefGoogle Scholar
  20. 20.
    Shi H, Ma C, Yang J, Zhao L, Mei XF, Gong G (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71CrossRefGoogle Scholar
  21. 21.
    Zhang BL, Gu TX, Mo ZY (1999) Principles and methods of numerical parallel computation. National Defense Industry Press, BeijingGoogle Scholar
  22. 22.
    ISO 230-3 (2001) Test code for machine tool—part 3: determination of thermal effects. ISO copyright office, GenevaGoogle Scholar
  23. 23.
    Wang W, Yang JG, Yao XD, Fan KG, Li ZH (2012) Synthesis modeling and real-time compensation of geometric error and thermal error for CNC machine tools. Chin J Mech Eng 48(7):165–1709CrossRefGoogle Scholar
  24. 24.
    Wei X, Gao F, Li Y, Li YH, Ma Z (2016) Optimization of thermal error model critical point for gantry machine tool feeding system. Chin J Sci Instrum 37(6):1340–1346Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Lab of NC Machine Tools and Integrated Manufacturing Equipment of the Education Ministry & Key Lab of Manufacturing Equipment of Shanxi ProvinceXi’an University of TechnologyXi’anChina
  2. 2.School of Transportation and Automotive EngineeringPanzhihua UniversityPanzhihuaChina

Personalised recommendations