Advertisement

Removal of critical regions by radius-varying trochoidal milling with constant cutting forces

  • Qing-Hui Wang
  • Zhao-Yang Liao
  • Yu-Xing Zheng
  • Jing-Rong Li
  • Xue-Feng Zhou
ORIGINAL ARTICLE
  • 65 Downloads

Abstract

This work presents a novel milling strategy for complex pocket machining by integrating radius-varying trochoidal (RVTR) toolpath with contour parallel (CP) toolpath. Based on a quantitative analysis on the fluctuation of material removal rates (MRR), the proposed strategy is able to precisely identify critical regions from complex pocket geometries, and then by integrating flexible trochoidal radius with adaptive trochoidal step, the proposed approach is able to integrate the RVTR toolpath into CP toolpath under a consistent transition of material removal rate. Moreover, by applying RVTR toolpath, the cutting force can be maintained constantly when machining critical regions. Comparing with the trochoidal milling function available with current mainstream CAM software, experimental investigation has shown that the proposed RVTR-CP toolpath integration strategy offers a better machining condition with minimized fluctuation of cutting forces. Moreover, the total length of toolpath is decreased considerably and hence the machining efficiency is greatly improved.

Keywords

Pocket milling Critical milling regions Trochoidal milling Material removal rate Cutting force control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China [grant numbers 51575192 and 51775192] and the Science & Technology Research Program of Guangdong, China [grant numbers 2015B090922010 and 2017B010110010].

References

  1. 1.
    Choy HS, Chan KW (2003) Modeling cutter swept angle at cornering cut. Int J CAD/CAM 3(1):1–12Google Scholar
  2. 2.
    Ibaraki S, Yamaji I, Matsubara A (2010) On the removal of critical cutting regions by trochoidal grooving. Precis Eng 34(3):467–473.  https://doi.org/10.1016/j.precisioneng.2010.01.007 CrossRefGoogle Scholar
  3. 3.
    Tarng YS, Cheng ST (1993) Fuzzy control of feed rate in end milling operations. Int J Mach Tools Manuf 33(4):643–650.  https://doi.org/10.1016/0890-6955(93)90098-F CrossRefGoogle Scholar
  4. 4.
    Erdim H, Lazoglu I, Ozturk B (2006) Feedrate scheduling strategies for free-form surfaces. Int J Mach Tools Manuf 46(7):747–757.  https://doi.org/10.1016/j.ijmachtools.2005.07.036 CrossRefGoogle Scholar
  5. 5.
    Uddin MS, Ibaraki S, Matsubara A, Nishida S, Kakino Y (2007) A tool path modification approach to cutting engagement regulation for the improvement of machining accuracy in 2D milling with a straight end mill. J Manuf Sci Eng 129(6):1069–1079.  https://doi.org/10.1115/1.2752526 CrossRefGoogle Scholar
  6. 6.
    Karunakaran KP, Shringi R, Ramamurthi D, Hariharan C (2010) Octree-based NC simulation system for optimization of feed rate in milling using instantaneous force model. Int J Adv Manuf Technol 46(5):465–490.  https://doi.org/10.1007/s00170-009-2107-7 CrossRefGoogle Scholar
  7. 7.
    Choy HS, Chan KW (2003) A corner-looping based tool path for pocket milling. Comput Aided Des 35(2):155–166.  https://doi.org/10.1016/S0010-4485(02)00049-0 CrossRefGoogle Scholar
  8. 8.
    Kim HC, Lee SG, Yang MY (2006) An optimized contour parallel tool path for 2D milling with flat end mill. Int J Adv Manuf Technol 31(5):567–573.  https://doi.org/10.1007/s00170-005-0228-1 CrossRefGoogle Scholar
  9. 9.
    Held M, Spielberger C (2009) A smooth spiral tool path for high speed machining of 2D pockets. Comput Aided Des 41(7):539–550.  https://doi.org/10.1016/j.cad.2009.04.002 CrossRefGoogle Scholar
  10. 10.
    Rauch M, Duc E, Hascoet JY (2009) Improving trochoidal tool paths generation and implementation using process constraints modeling. Int J Mach Tools Manuf 49(5):375–383.  https://doi.org/10.1016/j.ijmachtools.2008.12.006 CrossRefGoogle Scholar
  11. 11.
    Elber G, Cohen E, Drake S (2005) MATHSM: medial axis transform toward high speed machining of pockets. Comput Aided Des 37(2):241–250.  https://doi.org/10.1016/j.cad.2004.05.008 CrossRefGoogle Scholar
  12. 12.
    Ferreira JCE, Ochoa DM (2013) A method for generating trochoidal tool paths for 2D pocket milling process planning with multiple tools. Proc Inst Mech Eng Part B: J Eng Manuf 227(9):1287–1298.  https://doi.org/10.1177/0954405413487897 CrossRefGoogle Scholar
  13. 13.
    Wu S, Ma W, Li B, Wang C (2016) Trochoidal machining for the high-speed milling of pockets. J Mater Process Technol 233:29–43.  https://doi.org/10.1016/j.jmatprotec.2016.01.033 CrossRefGoogle Scholar
  14. 14.
    Wu S, Zhao Z, Wang CY, Xie Y, Ma W (2016) Optimization of toolpath with circular cycle transition for sharp corners in pocket milling. Int J Adv Manuf Technol 86(9–12):1–11.  https://doi.org/10.1007/s00170-016-8364-3 Google Scholar
  15. 15.
    Deng Q, Mo R, Chen ZC, Chang Z (2017) A new approach to generating trochoidal tool paths for effective corner machining. Int J Adv Manuf Technol 1–4:1–12.  https://doi.org/10.1007/s00170-017-1353-3 Google Scholar
  16. 16.
    Sun C, Wang YH, Huang ND (2015) A new plunge milling tool path generation method for radial depth control using medial axis transform. Int J Adv Manuf Technol 76(9–12):1575–1582.  https://doi.org/10.1007/s00170-014-6375-5 CrossRefGoogle Scholar
  17. 17.
    Wang QH, Wang S, Jiang F, Li JR (2016) Adaptive trochoidal toolpath for complex pockets machining. Int J Prod Res 54(20):1–14.  https://doi.org/10.1080/00207543.2016.1143135 Google Scholar
  18. 18.
    Ohtsu N (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man & Cybernetics 9(1):62–66.  https://doi.org/10.1109/TSMC.1979.4310076 CrossRefGoogle Scholar
  19. 19.
    Edelsbrunner H, Kirkpatrick DG, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inf Theory 29(4):551–559.  https://doi.org/10.1109/TIT.1983.1056714 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Otkur M, Lazoglu I (2007) Trochoidal milling. Int J Mach Tools Manuf 47(9):1324–1332.  https://doi.org/10.1016/j.ijmachtools.2006.08.002 CrossRefGoogle Scholar
  21. 21.
    Held M (2001) VRONI: an engineering approach to the reliable and efficient computation of voronoi diagrams of points and line segments. Comput Geom 18(2):95–123.  https://doi.org/10.1016/S0925-7721(01)00003-7 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kloypayan J, Lee YS (2002) Material engagement analysis of different endmills for adaptive feedrate control in milling processes. Comput Ind 47(1):55–76.  https://doi.org/10.1016/S0166-3615(01)00136-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Qing-Hui Wang
    • 1
  • Zhao-Yang Liao
    • 1
  • Yu-Xing Zheng
    • 1
  • Jing-Rong Li
    • 1
  • Xue-Feng Zhou
    • 2
  1. 1.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Guangdong Institute of Intelligent ManufacturingGuangzhouChina

Personalised recommendations