Skip to main content
Log in

Effect of corrosion pit density on the fatigue life of aluminum 1050A

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fatigue and corrosion fatigue damage of materials is often the most important cause of frequent stops of machines and industrial equipment. For this, many researches are investigated in this field. The aim of this work is to study the effect of the corrosion pit density on the fatigue life of aluminum 1050A. Fatigue and corrosion fatigue tests carried out under tension-compression loading with load ratio R = − 1, at frequency of 78 Hz, and ambient temperature on not corroded and corroded specimens in 3.5% NaCl solution during different immersion times. From the experimental study, it was concluded that the pitting density increases as the immersion time increases and does not have a large effect on the fatigue strength of aluminum 1050A after 8-, 24-, 40-, 56-, and 72-h immersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanni O, Loto CA, Popoola API (2016) Inhibitive behaviour of zinc gluconate on aluminium alloy in 3.5% Nacl solution. Silicon 8(2):195–200. https://doi.org/10.1007/s12633-014-9180-8

    Article  Google Scholar 

  2. Amarnath L, Bhattacharjee A, Dutta K (2016) Ratcheting fatigue behaviour of Al-7075 T6 alloy: influence of stress parameters. Mater Des 115:012018. https://doi.org/10.1088/1757-899X/115/1/012018

    Google Scholar 

  3. Sadeler R, Totik Y, Gavgalı M, Kaymaz I (2004) Improvements of fatigue behaviour in 2014 Al alloy by solution heat treating and age-hardening. Mater Des 25:439–445. https://doi.org/10.1016/j.matdes.2003.12.003

    Article  Google Scholar 

  4. Smith WF (2001) Materials science and engineering, Translated Author: Kınıkoğlu, N.G. (Turkish), Literature Publications, Istanbul, Turkey

  5. Rooy EL (2005) ASM international handbook, properties and selection: nonferrous alloys and special-purpose materials. In Introduction to aluminum and aluminum alloys, vol. 2, The Materials Information Company, USA

  6. Sakin R (2016) Fatigue-life estimation and material selection for commercial-purity aluminum sheets. Res Eng Struct Mat 2(2):89–104. https://doi.org/10.17515/resm2015.30me1205

    Google Scholar 

  7. Sakin R, Muharrem ER (2010) Investigation of plane-bending fatigue behavior of 1100-H14 aluminum alloy. J Fac Eng Archit Gazi Univ 25(2):213–223

    Google Scholar 

  8. Zhang W, Lv S, Li Z, Yao L, Tong X (2015) Relationship between fracture characterisation and fatigue life of pre-corroded aluminium alloy. Mater Res Innov 19(sup 5):S5-239–S5-244. https://doi.org/10.1179/1432891714Z.0000000001085

    Article  Google Scholar 

  9. Ishihara S, Nan ZY, Mcevily AJ, Goshima T, Sunada S (2008) On the initiation and growth behavior of corrosion pits during corrosion fatigue process of industrial pure aluminum. Int J Fatigue 30:1659–1668. https://doi.org/10.1016/j.ijfatigue.2007.11.004

    Article  Google Scholar 

  10. Ilman MN (2014) Chromate inhibition of environmentally assisted fatigue crack propagation of aluminium alloy AA 2024-T3 in 3.5% NaCl solution. Int J Fatigue 62:228–235. https://doi.org/10.1016/j.ijfatigue.2013.03.008

    Article  Google Scholar 

  11. Withy B, Campbell S, Stephen G (2014) The influence of corrosion pits and cold expanded fastener holes on the fatigue life aluminium 7075-T651. Adv Mater Res 892:87–92. https://doi.org/10.4028/www.scientific.net/AMR.891-892.87

    Article  Google Scholar 

  12. Pereira MC, Silva JWJ, Acciari HA, Codaro EN, Hein LRO (2012) Morphology characterization and kinetics evaluation of pitting corrosion of commercially pure aluminium by digital image analysis. Mater Sci Appl 3:287–293

    Google Scholar 

  13. Guérin M (2015) Corrosion-fatigue lifetime of aluminium-copper-lithium alloy 2050 in chloride solution. Mater Des 87:681–692. https://doi.org/10.1016/j.matdes.2015.08.003

    Article  Google Scholar 

  14. Abdulstaar MA, Mhaede M (2014) Fatigue behaviour of commercially pure aluminium processed by rotary swaging. J Mater Sci 49:1138–1143. https://doi.org/10.1007/s10853-013-7792-9

    Article  Google Scholar 

  15. Soliman MS, El-danaf EA, Almajid AA (2012) Enhancement of static and fatigue strength of 1050 Al processed by equal-channel angular pressing using two routes. Mater Sci Eng A 532:120–129. https://doi.org/10.1016/j.msea.2011.10.072

    Article  Google Scholar 

  16. Sakin R (2016) Investigation of bending fatigue-life of aluminum sheets based on rolling direction. Alexandria Engineering Journal 57:35–47. https://doi.org/10.1016/j.aej.2016.11.005

    Article  Google Scholar 

  17. Reddy AC (2015) Fatigue life prediction of different joint designs for friction welding of 1050 mild steel and 1050 aluminum. International Journal of Scientific and Engineering Research 6(4):408–412

    Google Scholar 

  18. Höppel HW, Mathias G, Kümmel F, Haus T (2016) Enhanced fatigue lives in AA1050A / AA5005 laminated metal composites produced by accumulative roll bonding. Acta Mater 120:150–158. https://doi.org/10.1016/j.actamat.2016.08.039

    Article  Google Scholar 

  19. Naeimi M, Eivani AR, Jafarian HR, Boutorabi SMA, Shams H (2017) Correlation between microstructure, tensile properties and fatigue life of AA1050 aluminum alloy processed by pure shear extrusion. Mater Sci Eng A 679:292–298. https://doi.org/10.1016/j.msea.2016.09.113

    Article  Google Scholar 

  20. Eivani AR, Hosseini M, Jafarian HR, Anijdan SHM, Park N (2017) Microstructural evolution and fatigue properties of severely deformed AA1050 aluminum alloy. Mater Charact 130:204–210. https://doi.org/10.1016/j.matchar.2017.06.016

    Article  Google Scholar 

  21. Höppel HW, May L, Prell M, Göken M (2011) Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime. Int J Fatigue 33:10–18. https://doi.org/10.1016/j.ijfatigue.2010.04.013

    Article  Google Scholar 

  22. Kümmel F, Tegtmeier T, Höppel HW (2017) Optimized layer architecture for an extended fatigue life of ultrafine-grained AA1050 / AA5005 laminated metal composites. Mater Sci Eng 194:012036. https://doi.org/10.1088/1757-899X/194/1/012036

    Google Scholar 

  23. Makabe C, Socie DF, andSueyoshi T (2004) Shear mode fatigue crack growth in 1050 aluminium. Fatigue Fract Eng Mater Struct 27:669–678. https://doi.org/10.1111/j.1460-2695.2004.00788.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Physical Metallurgy and Property of Materials laboratory of Badji Mokhtar University Annaba for specimen preparation. Thanks are due to the Metallurgy and Materials Engineering Department of Badji Mokhtar University for fatigue tests. A great thank to the Institute for Ship Structural Design and Analysis, Hamburg University of Technology (TUHH), Germany for the scientific issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Adjel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adjel, S., Merakeb, N., Benchouia, S. et al. Effect of corrosion pit density on the fatigue life of aluminum 1050A. Int J Adv Manuf Technol 97, 3163–3177 (2018). https://doi.org/10.1007/s00170-018-2163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2163-y

Keywords

Navigation