Skip to main content
Log in

Synthesis and recent advances in tribological applications of graphene

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Graphene is one of the most emerging material in the field of nanotechnology, and it is gaining a tremendous amount of research interest in recent years. Apart from its unique electronic, electrical, mechanical, and thermal properties, graphene also possesses lower wear rate and friction coefficient. The superior tribological properties of graphene have attracted many researchers to synthesize self-lubricating nanocomposite materials that can have several applications in the automobile, aerospace, and marine industries. Graphene is also proven a competitive nanomaterial as an additive in the lubricant oil because of stable suspension and improved anti-wear properties of the component. This article aims to present the review of the advancement in the field of graphene synthesis; tribological properties of graphene; the role of graphene as reinforcement in polymer-matrix, metal-matrix, and ceramic-matrix nanocomposites; and also graphene as an additive in lubricant oil. The results reveal that addition of graphene to the composites can lead to decrease both wear rate and coefficient of friction for all three class of materials. Moreover, when graphene used as a lubricant additive, it improves the load carrying capacity of lubricant oil along with decreased friction and wear. Performance of graphene-reinforced composites and graphene suspended lubricants depend on various tribological and materials parameters which are discussed in this article. The limitation of present knowledge and future research scope are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Google Scholar 

  2. Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499. https://doi.org/10.1016/j.carbon.2008.10.031

    Google Scholar 

  3. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911

    Google Scholar 

  4. Raichura A, Dutta M, Stroscio MA (2004) Continuum model for acoustic phonons in nanotubes: phonon bottleneck. physica status solidi (b) 241 (15):3448-3453

  5. Copper Annealed, MatWeb Materials Property Data (2017) http://www.matweb.com/search/datasheet.aspx?matguid=9aebe83845c04c1db5126fada6f76f7e. Accessed 26-06 2017

  6. ASTM A36 Steel, MatWeb Materials Property Data. (2017) http://www.matweb.com/search/DataSheet.aspx?MatGUID=afc003f4fb40465fa3df05129f0e88e6&ckck=1. Accessed 26–06 2017

  7. Compare ASTM A27 cast steel to ASTM A36 carbon steel. (2017) http://www.makeitfrom.com/compare/ASTM-A27-Cast-Carbon-Steel/ASTM-A36-SS400-S275-Structural-Carbon-Steel. Accessed 26–06 2017

  8. Berman D, Deshmukh SA, Sankaranarayanan SKRS, Erdemir A, Sumant AV (2014) Extraordinary macroscale wear resistance of one atom thick graphene layer. Adv Funct Mater 24(42):6640–6646

    Google Scholar 

  9. Khun NW, Zhang H, Lim LH, Yang J (2015) Mechanical and tribological properties of graphene modified epoxy composites. KMUTNB Int J Appl Sci Technol 8(2):101–109

    Google Scholar 

  10. Xu Z, Shi X, Zhai W, Yao J, Song S, Zhang Q (2014) Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon 67:168–177

    Google Scholar 

  11. Pfeifer J, Sáfrán G, Wéber F, Zsigmond V, Koszor O, Arató P, Balázsi C Tribology study of silicon nitride-based nanocomposites with carbon additions. In, 2010. Trans Tech Publ, pp 235–238

  12. Peng Y, Wang Z, Zou K (2015) Friction and wear properties of different types of graphene nanosheets as effective solid lubricants. Langmuir 31(28):7782–7791. https://doi.org/10.1021/acs.langmuir.5b00422

    Google Scholar 

  13. Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299(5611):1361–1361

    Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Google Scholar 

  15. Gass MH, Bangert U, Bleloch AL, Wang P, Nair RR, Geim AK (2008) Free-standing graphene at atomic resolution. Nat Nanotechnol 3(11):676–681

    Google Scholar 

  16. Meyer JC, Girit CO, Crommie MF, Zettl A (2008) Hydrocarbon lithography on graphene membranes. Appl Phys Lett 92(12):123110

    Google Scholar 

  17. Novoselov KS, Geim AK, Morozov SV, Dubonos SV, Zhang Y, Jiang D (2004) Room-temperature electric field effect and carrier-type inversion in graphene films. arXiv preprint cond-mat/0410631

  18. Huc V, Bendiab N, Rosman N, Ebbesen T, Delacour C, Bouchiat V (2008) Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology 19(45):455601

    Google Scholar 

  19. Shukla A, Kumar R, Mazher J, Balan A (2009) Graphene made easy: high quality, large-area samples. Solid State Commun 149(17):718–721

    Google Scholar 

  20. Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20(28):5817–5819

    Google Scholar 

  21. Liu C, Hu G, Gao H (2012) Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide. J Supercrit Fluids 63:99–104

    Google Scholar 

  22. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525

    Google Scholar 

  23. Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133(23):8888–8891

    Google Scholar 

  24. Su C-Y, Lu A-Y, Xu Y, Chen F-R, Khlobystov AN, Li L-J (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3):2332–2339

    Google Scholar 

  25. Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430(1–3):56–59. https://doi.org/10.1016/j.cplett.2006.06.081

    Google Scholar 

  26. Obraztsov AN, Obraztsova EA, Tyurnina AV, Zolotukhin AA (2007) Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45(10):2017–2021. https://doi.org/10.1016/j.carbon.2007.05.028

    Google Scholar 

  27. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93(11):113103

    Google Scholar 

  28. De Arco LG, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8(2):135–138

    Google Scholar 

  29. Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C (2010) Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett 1(20):3101–3107

    Google Scholar 

  30. Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, Mammana VP (2004) Free-standing subnanometer graphite sheets. Appl Phys Lett 85(7):1265–1267

    Google Scholar 

  31. Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42(14):2867–2872. https://doi.org/10.1016/j.carbon.2004.06.035

    Google Scholar 

  32. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514

    Google Scholar 

  33. Kim YS, Lee JH, Kim YD, Jerng S-K, Joo K, Kim E, Jung J, Yoon E, Park YD, Seo S, Chun S-H (2013) Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nano 5(3):1221–1226. https://doi.org/10.1039/C2NR33034B

    Google Scholar 

  34. Terasawa T-o, Koichiro S (2012) Synthesis of nitrogen-doped graphene by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 51(5R):055101

    Google Scholar 

  35. Cheng L, Yun K, Lucero A, Huang J, Meng X, Lian G, Nam H-S, Wallace RM, Kim M, Venugopal A (2015) Low temperature synthesis of graphite on Ni films using inductively coupled plasma enhanced CVD. J Mater Chem C 3(20):5192–5198

    Google Scholar 

  36. Woo Y, Kim D-C, Jeon D-Y, Chung H-J, Shin S-M, Li X-S, Kwon Y-N, Seo DH, Shin J, Chung UI (2009) Large-grained and highly-ordered graphene synthesized by radio frequency plasma-enhanced chemical vapor deposition. ECS Trans 19(5):111–114

    Google Scholar 

  37. Wang SM, Pei YH, Wang X, Wang H, Meng QN, Tian HW, Zheng XL, Zheng WT, Liu YC (2010) Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition. J Phys D Appl Phys 43(45):455402

    Google Scholar 

  38. Rollings E, Gweon GH, Zhou SY, Mun BS, McChesney JL, Hussain BS, Fedorov AV, First PN, de Heer WA, Lanzara A (2006) Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J Phys Chem Solids 67(9–10):2172–2177. https://doi.org/10.1016/j.jpcs.2006.05.010

    Google Scholar 

  39. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916

    Google Scholar 

  40. Hass J, De Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Matter 20(32):323202

    Google Scholar 

  41. Ohta T, El Gabaly F, Bostwick A, McChesney JL, Emtsev KV, Schmid AK, Seyller T, Horn K, Rotenberg E (2008) Morphology of graphene thin film growth on SiC (0001). New J Phys 10(2):023034

    Google Scholar 

  42. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Google Scholar 

  43. Sahu SR, Devi MM, Mukherjee P, Sen P, Biswas K (2013) Optical property characterization of novel graphene-X (X = Ag, Au and Cu) nanoparticle hybrids. J Nanomater 2013:6

    Google Scholar 

  44. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Google Scholar 

  45. Wang F, Zhang K (2011) Reduced graphene oxide–TiO 2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J Mol Catal A Chem 345(1):101–107

    Google Scholar 

  46. Xu Y, Sheng K, Li C, Shi G (2011) Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J Mater Chem 21(20):7376–7380

    Google Scholar 

  47. Tan LL, Chai SP, Mohamed AR (2012) Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem 5(10):1868–1882

    Google Scholar 

  48. Liu H, Li Y, Wang T, Wang Q (2012) In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. J Mater Sci 47(4):1867–1874. https://doi.org/10.1007/s10853-011-5975-9

    Google Scholar 

  49. Juang Z-Y, Wu C-Y, Lo C-W, Chen W-Y, Huang C-F, Hwang J-C, Chen F-R, Leou K-C, Tsai C-H (2009) Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47(8):2026–2031. https://doi.org/10.1016/j.carbon.2009.03.051

    Google Scholar 

  50. Garaj S, Hubbard W, Golovchenko JA (2010) Graphene synthesis by ion implantation. Appl Phys Lett 97(18):183103

    Google Scholar 

  51. De Parga ALV, Calleja F, Borca B, Passeggi MCG Jr, Hinarejos JJ, Guinea F, Miranda R (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100(5):056807

    Google Scholar 

  52. Cano-Márquez AG, Rodríguez-Macías FJ, Campos-Delgado J, Espinosa-González CG, Tristán-López F, Ramírez-González D, Cullen DA, Smith DJ, Terrones M, Vega-Cantú YI (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9(4):1527–1533

    Google Scholar 

  53. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880

    Google Scholar 

  54. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876

    Google Scholar 

  55. Kim C-D, Min B-K, Jung W-S (2009) Preparation of graphene sheets by the reduction of carbon monoxide. Carbon 47(6):1610–1612

    Google Scholar 

  56. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Graphene-based engine oil nanofluids for tribological applications. ACS Appl Mater Interfaces 3(11):4221–4227

    Google Scholar 

  57. Jeon I-Y, Choi H-J, Jung S-M, Seo J-M, Kim M-J, Dai L, Baek J-B (2012) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135(4):1386–1393

    Google Scholar 

  58. Liu J, Poh CK, Zhan D, Lai L, Lim SH, Wang L, Liu X, Gopal Sahoo N, Li C, Shen Z, Lin J (2013) Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy 2(3):377–386. https://doi.org/10.1016/j.nanoen.2012.11.003

    Google Scholar 

  59. Lee C, Wei X, Li Q, Carpick R, Kysar JW, Hone J (2009) Elastic and frictional properties of graphene. physica status solidi (b) 246 (11-12):2562-2567

  60. Filleter T, Bennewitz R (2010) Structural and frictional properties of graphene films on SiC (0001) studied by atomic force microscopy. Phys Rev B 81(15):155412

    Google Scholar 

  61. Choi JS, Kim J-S, Byun I-S, Lee DH, Lee MJ, Park BH, Lee C, Yoon D, Cheong H, Lee KH (2011) Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 333(6042):607–610

    Google Scholar 

  62. Choi JS, Kim J-S, Byun I-S, Lee DH, Hwang IR, Park BH, Choi T, Park JY, Salmeron M (2012) Facile characterization of ripple domains on exfoliated graphene. Rev Sci Instrum 83(7):073905

    Google Scholar 

  63. Li Q, Lee C, Carpick RW, Hone J (2010) Substrate effect on thickness-dependent friction on graphene. physica status solidi (b) 247 (11-12):2909-2914

  64. Miracle DB (2005) Metal matrix composites—from science to technological significance. Compos Sci Technol 65(15):2526–2540

    Google Scholar 

  65. Fusaro RL (1990) Self-lubricating polymer composites and polymer transfer film lubrication for space applications. Tribol Int 23(2):105–122. https://doi.org/10.1016/0301-679X(90)90043-O

    Google Scholar 

  66. Voevodin AA, Zabinski JS (2005) Nanocomposite and nanostructured tribological materials for space applications. Compos Sci Technol 65(5):741–748. https://doi.org/10.1016/j.compscitech.2004.10.008

    Google Scholar 

  67. Raj R, Maroo SC, Wang EN (2013) Wettability of graphene. Nano Lett 13(4):1509–1515

    Google Scholar 

  68. Li Y, Wang Q, Wang T, Pan G (2012) Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J Mater Sci 47(2):730–738

    Google Scholar 

  69. Tai Z, Chen Y, An Y, Yan X, Xue Q (2012) Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol Lett 46(1):55–63. https://doi.org/10.1007/s11249-012-9919-6

    Google Scholar 

  70. Ionita M, Pandele AM, Crica L, Pilan L (2014) Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Compos Part B 59:133–139

    Google Scholar 

  71. Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y (2017) Mechanical reinforcement of graphene/poly(vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods. Compos Part B 113:278–284. https://doi.org/10.1016/j.compositesb.2017.01.053

    Google Scholar 

  72. Tang Z, Lei Y, Guo B, Zhang L, Jia D (2012) The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer 53(2):673–680

    Google Scholar 

  73. Li Y, Wang S, Wang Q (2017) Enhancement of tribological properties of polymer composites reinforced by functionalized graphene. Compos Part B 120:83–91. https://doi.org/10.1016/j.compositesb.2017.03.063

    Google Scholar 

  74. Ren G, Zhang Z, Zhu X, Ge B, Guo F, Men X, Liu W (2013) Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite. Composites Part A: Applied Science and Manufacturing 49 (Supplement C):157-164. doi: https://doi.org/10.1016/j.compositesa.2013.03.001

  75. Wang Z, Nelson JK, Miao J, Linhardt RJ, Schadler LS, Hillborg H, Zhao S (2012) Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans Dielectr Electr Insul 19(3):960–967

    Google Scholar 

  76. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Google Scholar 

  77. Shiu S-C, Tsai J-L (2014) Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos Part B 56:691–697

    Google Scholar 

  78. Moghadam AD, Omrani E, Menezes PL, Rohatgi PK (2015) Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos Part B 77:402–420

    Google Scholar 

  79. Hu Z, Tong G, Nian Q, Xu R, Saei M, Chen F, Chen C, Zhang M, Guo H, Xu J (2016) Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Compos Part B 93:352–359. https://doi.org/10.1016/j.compositesb.2016.03.043

    Google Scholar 

  80. Moghadam AD, Schultz BF, Ferguson JB, Omrani E, Rohatgi PK, Gupta N (2014) Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. JOM 66(6):872–881

    Google Scholar 

  81. Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66(8):594–597

    Google Scholar 

  82. Ghazaly A, Seif B, Salem HG (2013) Mechanical and tribological properties of AA2124-graphene self lubricating nanocomposite. Light Metals 2013:411–415

    Google Scholar 

  83. Kuzumaki T, Miyazawa K, Ichinose H, Ito K (1998) Processing of carbon nanotube reinforced aluminum composite. J Mater Res 13(09):2445–2449

    Google Scholar 

  84. Kwon H, Park DH, Silvain JF, Kawasaki A (2010) Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol 70(3):546–550

    Google Scholar 

  85. Wozniak J, Kostecki M, Cygan T, Buczek M, Olszyna A (2017) Self-lubricating aluminium matrix composites reinforced with 2D crystals. Compos Part B 111:1–9. doi: https://doi.org/10.1016/j.compositesb.2016.11.054

  86. Tabandeh-Khorshid M, Omrani E, Menezes PL, Rohatgi PK (2016) Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets. Eng Sci Technol Int J 19(1):463–469. https://doi.org/10.1016/j.jestch.2015.09.005

    Google Scholar 

  87. Rengifo S, Zhang C, Harimkar S, Boesl B, Agarwal A (2017) Tribological behavior of spark plasma sintered aluminum-graphene composites at room and elevated temperatures. Technologies 5(1):4

    Google Scholar 

  88. Chmielewski M, Michalczewski R, Piekoszewski W, Kalbarczyk M (2016) Tribological behaviour of copper-graphene composite materials. Key Eng Mater 674

  89. Hu Z, Chen F, Xu J, Ma Z, Guo H, Chen C, Nian Q, Wang X, Zhang M (2017) Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: microstructure and mechanical properties. Compos Part B. https://doi.org/10.1016/j.compositesb.2017.09.069

  90. Porwal H, Tatarko P, Saggar R, Grasso S, Kumar Mani M, Dlouhý I, Dusza J, Reece MJ (2014) Tribological properties of silica–graphene nano-platelet composites. Ceramics International 40 (8, Part A):12067-12074. doi: https://doi.org/10.1016/j.ceramint.2014.04.046

  91. Belmonte M, Ramírez C, González-Julián J, Schneider J, Miranzo P, Osendi MI (2013) The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 61:431–435. https://doi.org/10.1016/j.carbon.2013.04.102

    Google Scholar 

  92. Hvizdoš P, Dusza J, Balázsi C (2013) Tribological properties of Si3N4–graphene nanocomposites. J Eur Ceram Soc 33(12):2359–2364. https://doi.org/10.1016/j.jeurceramsoc.2013.03.035

    Google Scholar 

  93. Balko J, Hvizdoš P, Dusza J, Balázsi C, Gamcová J (2014) Wear damage of Si3N4-graphene nanocomposites at room and elevated temperatures. J Eur Ceram Soc 34(14):3309–3317. https://doi.org/10.1016/j.jeurceramsoc.2014.02.025

    Google Scholar 

  94. Gutierrez-Gonzalez CF, Smirnov A, Centeno A, Fernández A, Alonso B, Rocha VG, Torrecillas R, Zurutuza A, Bartolome JF (2015) Wear behavior of graphene/alumina composite. Ceram Int 41(6):7434–7438. https://doi.org/10.1016/j.ceramint.2015.02.061

    Google Scholar 

  95. Zhang C, Nieto A, Agarwal A (2016) Ultrathin graphene tribofilm formation during wear of Al2O3–graphene composites. Nanomater Energy 5(1):1–9

    Google Scholar 

  96. Zhu Q, Shi X, Zhai W, Yao J, Ibrahim AMM, Xu Z, Song S, ud Din AQ, Chen L, Xiao Y (2014) Effect of counterface balls on the friction layer of Ni3Al matrix composites with 1.5 wt% graphene nanoplatelets. Tribol Lett 55 (2):343–352

  97. Porwal H, Grasso S, Reece MJ (2013) Review of graphene–ceramic matrix composites. Adv Appl Ceram 112(8):443–454

    Google Scholar 

  98. Walker LS, Marotto VR, Rafiee MA, Koratkar N, Corral EL (2011) Toughening in graphene ceramic composites. ACS Nano 5(4):3182–3190

    Google Scholar 

  99. Wang K, Wang Y, Fan Z, Yan J, Wei T (2011) Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater Res Bull 46(2):315–318. https://doi.org/10.1016/j.materresbull.2010.11.005

    Google Scholar 

  100. Ramirez C, Figueiredo FM, Miranzo P, Poza P, Osendi MI (2012) Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon 50(10):3607–3615

    Google Scholar 

  101. Fan Y, Jiang W, Kawasaki A (2012) Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type. Adv Funct Mater 22(18):3882–3889

    Google Scholar 

  102. Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105

    Google Scholar 

  103. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442 (7100):282-286

  104. Lin J, Wang L, Chen G (2011) Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol Lett 41(1):209–215

    Google Scholar 

  105. Huang HD, Tu JP, Gan LP, Li CZ (2006) An investigation on tribological properties of graphite nanosheets as oil additive. Wear 261(2):140–144. https://doi.org/10.1016/j.wear.2005.09.010

    Google Scholar 

  106. Lu K (2008) Theoretical analysis of colloidal interaction energy in nanoparticle suspensions. Ceram Int 34(6):1353–1360. https://doi.org/10.1016/j.ceramint.2007.02.016

    Google Scholar 

  107. Zhang W, Zhou M, Zhu H, Tian Y, Wang K, Wei J, Ji F, Li X, Li Z, Zhang P (2011) Tribological properties of oleic acid-modified graphene as lubricant oil additives. J Phys D Appl Phys 44(20):205303

    Google Scholar 

  108. Senatore A, D'Agostino V, Petrone V, Ciambelli P, Sarno M (2013) Graphene oxide nanosheets as effective friction modifier for oil lubricant: materials, methods, and tribological results. ISRN Tribology 2013

  109. Song H-J, Li N (2011) Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Applied Physics A 105(4):827–832

    Google Scholar 

  110. Kinoshita H, Nishina Y, Alias AA, Fujii M (2014) Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66:720–723. https://doi.org/10.1016/j.carbon.2013.08.045

    Google Scholar 

  111. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892

    Google Scholar 

  112. Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T (2012) The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23(11):112001

    Google Scholar 

  113. Liang M, Luo B, Zhi L (2009) Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 33(13):1161–1170

    Google Scholar 

  114. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO 4/graphene composites by co-precipitation method. Electrochem Commun 12(1):10–13

    Google Scholar 

  115. Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728

    Google Scholar 

  116. Kirkland NT, Schiller T, Medhekar N, Birbilis N (2012) Exploring graphene as a corrosion protection barrier. Corros Sci 56:1–4

    Google Scholar 

  117. Prasai D, Tuberquia JC, Harl RR, Jennings GK, Bolotin KI (2012) Graphene: corrosion-inhibiting coating. ACS Nano 6(2):1102–1108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep L. Menezes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasar, A.K., Menezes, P.L. Synthesis and recent advances in tribological applications of graphene. Int J Adv Manuf Technol 97, 3999–4019 (2018). https://doi.org/10.1007/s00170-018-2019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2019-5

Keywords

Navigation