Skip to main content
Log in

Thermo-mechanical modelling of ball screw preload force variation in different working conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ball screws are robust and economical linear positioning systems widely employed in high-speed and high-precision machines. Due to precision and stability requirements, the preload force is considered one of the main parameters defining the axial stiffness and the maximum axial load of the ball screw feed drives. In high-speed motions, thermal effects are also considerably relevant regarding positioning precision and dynamic stability of the machine. The temperature increase and the thermal gradient between the screw, the balls and the nuts result in geometrical variations and, consequently, variations in the preload force. This paper presents a numerical modelling strategy to predict the preload variation due to temperature increase using a thermo-mechanical 3D finite element method (FEM)-based model for double nut-ball screw drives. Two different thermo-mechanical coupling strategies are compared, and the obtained results are validated with experimental measurements for different initial preload and linear speeds. In the mechanical analysis, the nut-screw ball contact interface, the offset-based preloading and the restrictions of the ball bearings are included in the model, while the thermal analysis considers heat generation and heat diffusion. The causes of the thermal preload variation are discussed considering the ball load distribution and the axial and radial thermal displacements of the contacting points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altintas Y, Verl A, Brecher C, Uriarte L, Pritschow G (2011) Machine tool feed drives. CIRP Ann-Manuf Technol 60(2):779–796

    Article  Google Scholar 

  2. Weule H, Golz H (1991) Preload-control in ball screws — a new approach for machine tool building? CIRP Ann-Manuf Techn 40(1):383–386

    Article  Google Scholar 

  3. ISO 3408-5:2006 (2006) Ball screws. Part 5: Static and dynamic axial load ratings and operational life

  4. Verl A, Frey S, Heinze T (2014) Double nut ball screw with improved operating characteristics. CIRP Ann-Manuf Technol 63(1):361–364

    Article  Google Scholar 

  5. Verl A, Frey S (2010) Correlation between feed velocity and preloading in ball screw drives. CIRP Ann-Manuf Technol 59(1):429–432

    Article  Google Scholar 

  6. Navarro y de Sosa I, Bucht A, Junker T, Pagel K, Drossel W (2014) Novel compensation of axial thermal expansion in ball screw drives. Prod Eng 8(3):397–406

    Article  Google Scholar 

  7. Oyanguren A, Zahn P, Alberdi AH, Larraṅaga J, Lechler A, Ulacia I (2016) Preload variation due to temperature increase in double nut ball screws. Prod Eng 10(4-5):529–537

    Article  Google Scholar 

  8. Carmichael GDT, Davies PB (1970) Measurement of thermally induced preloads in bearings. Strain 6 (4):162–165

    Article  Google Scholar 

  9. Bossmanns B, Tu JF (1999) A thermal model for high speed motorized spindles. Int J Mach Tools Manuf 39(9):1345–1366

    Article  Google Scholar 

  10. Lin CW, Tu JF, Kamman J (2003) An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation. Int J Mach Tools Manuf 43(10):1035–1050

    Article  Google Scholar 

  11. Takabi J, Khonsari M (2015) On the thermally-induced seizure in bearings: a review. Tribol Int 91:118–130

    Article  Google Scholar 

  12. Mei X, Tsutsumi M, Tao T, Sun N (2003) Study on the load distribution of ball screws with errors. Mech Mach Theory 38(11):1257–1269

    Article  MATH  Google Scholar 

  13. Xu S, Sun YF, Shen H (2013) Load distribution of ball screw with contact angle variation. Appl Mech Mater 397-400:435–440

    Article  Google Scholar 

  14. Bertolaso R, Cheikh M, Barranger Y, Duprė J C, Germaneau A, Doumalin P (2014) Experimental and numerical study of the load distribution in a ball-screw system. J Mech Sci Technol 28(4):1411–1420

    Article  Google Scholar 

  15. Li Z, Fan K, Yang J, Zhang Y (2014) Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. Int J Adv Manuf Technol 73(5-8):773–782

    Article  Google Scholar 

  16. Jin C, Wu B, Hu Y (2015) Temperature distribution and thermal error prediction of a cnc feed system under varying operating conditions. Int J Adv Manuf Technol 77(9-12):1979–1992

    Article  Google Scholar 

  17. Shi H, Zhang D, Yang J, Ma C, Mei X, Gong G (2016) Experiment-based thermal error modeling method for dual ball screw feed system of precision machine tool. Int J Adv Manuf Technol 82(9-12):1693–1705

    Article  Google Scholar 

  18. Huang SC (1995) Analysis of a model to forecast thermal deformation of ball screw feed drive systems. Int J Mach Tools Manuf 35(8):1099–1104

    Article  Google Scholar 

  19. Shi H, Ma C, Yang J, Zhao L, Mei X, Gong G (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. Int J Mach Tools Manuf 97:60–71

    Article  Google Scholar 

  20. Junyong X, Youmin H, Bo W, Tielin S (2009) Research on thermal dynamics characteristics and modeling approach of ball screw. Int J Adv Manuf Technol 43(5-6):421–430

    Article  Google Scholar 

  21. Yun WS, Kim SK, Cho DW (1999) Thermal error analysis for a cnc lathe feed drive system. Int J Mach Tools Manuf 39(7):1087–1101

    Article  Google Scholar 

  22. Fletcher S, Ford D (2003) Measuring and modelling heat transfer and thermal errors on a ballscrew feed drive system, vol 44, chap Laser Metrology and Machine Performance VI, pp 349–359

  23. Xu Z, Liu X, Kim H, Shin J, Lyu S (2011) Thermal error forecast and performance evaluation for an air-cooling ball screw system. Int J Mach Tools Manuf 51(7):605–611

    Article  Google Scholar 

  24. Wu CH, Kung YT (2003) Thermal analysis for the feed drive system of a cnc machine center. Int J Mach Tools Manuf 43(15):1521–1528

    Article  Google Scholar 

  25. Yang A, Chai S, Hsu H, Kuo T, Wu W, Hsieh W, Hwang Y (2013) FEM-based modeling to simulate thermal deformation process for high-speed ball screw drive systems. Appl Mech Mater 481:171–179

    Article  Google Scholar 

  26. Wei CC, Horng J, Lin J (2012) Thermal analysis of a ball-screw system. Adv Mat Res 591-593:818–826

    Google Scholar 

  27. Guo Y, Liu C (2002) Mechanical properties of hardened aisi 52100 steel in hard machining processes. J Manuf Sci E-T ASME 124(1):1–9

    Article  Google Scholar 

  28. Dadalau A, Groh K, Reu M, Verl A (2011) Modeling linear guide systems with cofem: equivalent models for rolling contact. Prod Eng 6(1):39–46

    Article  Google Scholar 

  29. Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  30. Schaeffler Technical Guide STT (2013) Schaeffler Technologies AG & Co. KG

  31. Bjrling M, Habchi W, Bair S, Larsson R, Marklund P (2013) Towards the true prediction of EHL friction. Tribol Int 66:19–26

    Article  Google Scholar 

  32. Wei C, Lai R (2011) Kinematical analyses and transmission efficiency of a preloaded ball screw operating at high rotational speeds. Mech Mach Theory 46(7):880–898

    Article  MATH  Google Scholar 

  33. Bergman TL, Incropera FP (2011) Introduction to heat transfer. Wiley, Hoboken

    Google Scholar 

  34. Morgan VT (1975) The overall convective heat transfer from smooth circular cylinders. Adv Heat Transfer 11:199–264

  35. Madhusudana CV, Madhusudana C (1996) Thermal contact conductance. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the funding of the Basque Government in the predoctoral program (PRE_2016_2_0240). The support of Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen (ISW) in the experimental tests, with special mention of P. Zahn, is acknowledged. The technical and financial support of Shuton, S.A. is also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oyanguren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyanguren, A., Larrañaga, J. & Ulacia, I. Thermo-mechanical modelling of ball screw preload force variation in different working conditions. Int J Adv Manuf Technol 97, 723–739 (2018). https://doi.org/10.1007/s00170-018-2008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2008-8

Keywords

Navigation