Additive manufacturing technology: the status, applications, and prospects

  • Insaf Bahnini
  • Mickael Rivette
  • Ahmed Rechia
  • Ali Siadat
  • Abdelilah Elmesbahi


Additive manufacturing (AM) has first emerged in 1987 with the invention of stereolithography. The AM is an important, rapidly emerging, manufacturing technology that takes the information from a computer-aided design (CAD) and builds parts in a layer-by-layer style. As this technology offers many advantages such as manufacturing of complex geometries, reducing manufacturing cost and energy consumption, it has transformed manufacturing from the mass production to the mass customization. Also, it has found wide applications in several fields although some drawbacks. This paper presents the state of the art of the different AM processes, the material processing issues, and the post-processing operations. A comparison between AM and conventional processes is presented as well. We finish by presenting some prospects of this technology such as hybrid manufacturing and 4D printing.


Additive manufacturing (AM) AM processes Post-processing AM applications 4D printing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO (2015). ASTM 52900:2015 Additive manufacturing—general principles—terminology. Available from
  2. 2.
    Boyard N (2015) Méthodologie de conception pour la réalisation de pièces en Fabrication Additive. L’École Nationale Supérieure d’Arts et MétiersGoogle Scholar
  3. 3.
    Kruth J (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann 40(2):603–614CrossRefGoogle Scholar
  4. 4.
    Kianian, B (2017) Wohlers Report 2017: 3D printing and additive manufacturing state of the industry. Annual worldwide progress report. Fort Collins, Colorado, USAGoogle Scholar
  5. 5.
    Wikimedia Commons. (2017) Stereolithography apparatus vector.svg. Available from
  6. 6.
    Mitteramskogler G, Gmeiner R, Felzmann R et al (2014) Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf 1:110–118CrossRefGoogle Scholar
  7. 7.
    Zhang X, Jiang XN, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sensors Actuators A Phys 77(2):149–156CrossRefGoogle Scholar
  8. 8.
    Stratasys (2018) The 3D Printing Solutions Company—history. Available from
  9. 9.
    CustomPart.Net (2018).
  10. 10.
    Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14(2):72–80CrossRefGoogle Scholar
  11. 11.
    Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83:389–405. CrossRefGoogle Scholar
  12. 12.
    Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:1–10CrossRefGoogle Scholar
  13. 13.
    Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Additive Manufacturing 8:36–62CrossRefGoogle Scholar
  14. 14.
    Budding A, Vaneker THJ (2013) New strategies for powder compaction in powder-based rapid prototyping techniques. Procedia CIRP 6:527–532CrossRefGoogle Scholar
  15. 15.
    Manfredi D, Calignano F, Ambrosio EP, Krishnan M, Canali R, Biamino S, Pavese M, Fino P, Badini C, Atzeni E, Luliano L (2013) Direct metal laser sintering: an additive manufacturing technology ready to produce lightweight structural parts for robotic applications. Metall Ital 105(10):15–24Google Scholar
  16. 16.
    Mellor S (2014) An implementation framework for additive manufacturing. University of ExeterGoogle Scholar
  17. 17.
    Gong X, Anderson T, Chou K (2014) Review on powder-based electron beam additive manufacturing technology. Manuf Rev 1:2Google Scholar
  18. 18.
    Gibson I, Rosen D, Stucker B (2015) Directed energy deposition processes. In: Additive manufacturing technologies. Springer, New York, NYCrossRefGoogle Scholar
  19. 19.
    Sakly, A.: Fabrication additive de pièces à base d’alliages métalliques complexes. Université de Lorraine-École Doctorale RP2E, 2013Google Scholar
  20. 20.
    Singh R (2011) Process capability study of a rapid polyjet printing for plastic components. J Mech Sci Technol 25:1011–1015CrossRefGoogle Scholar
  21. 21.
    CustomPartNet (2018) 3D printing. Available from
  22. 22.
    Gibson I, Rosen D, Stucker B (2015) Post-processing. In: Additive manufacturing technologies. Springer, New York, NYCrossRefGoogle Scholar
  23. 23.
    Stratasys (2018) Finishing processes—bead blasting. Available from
  24. 24.
    Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360CrossRefGoogle Scholar
  25. 25.
    Flynn JM, Shokrani A, Newman ST, Dhokia V (2016) Hybrid additive and subtractive machine tools—research and industrial developments. Int. J. Mach. Manuf. 101:79–101CrossRefGoogle Scholar
  26. 26.
    ABLE Electropolishing. (2014) Electropolishing—the final step in prototypingGoogle Scholar
  27. 27.
    W.J. Sames, F. Medina, W.H. Peter, S.S. Babu, and R.R. Dehoff, Effect of process control and powder quality on Inconel 718 produced using Electron beam melting, John Wiley & Sons Inc; 2014, Effect of process control and powder quality on Inconel 718 produced using electron beam meltingGoogle Scholar
  28. 28.
    Kruth JP, Mercelis P, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11(1):26–36CrossRefGoogle Scholar
  29. 29.
    Kruth JP, Mercelis P, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36CrossRefGoogle Scholar
  30. 30.
    Rivera S, Panera M, Miranda D, Belzunce V (2010) Development of dense and cellular solids on CrCoMo alloy for orthopedic application. Procedia Engineering 10:2979–2987CrossRefGoogle Scholar
  31. 31.
    Gu D, Shen Y (2008) Processing conditions and microstructural features of porous 316L stainless steel components by DMLS. Applied Surface Science 255:1880–1887CrossRefGoogle Scholar
  32. 32.
    Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23((4):1169–1185CrossRefGoogle Scholar
  33. 33.
    Ang C, Leong KF, Chua CK (2006) Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp J:100–105Google Scholar
  34. 34.
    Liu H, Sparks T, Liou F, Dietrich DM Residual stress and deformation modelling for metal additive manufacturing processes. Proc. World Congr. Mech. Chem. Mater. Eng. (MCM 2015):2015Google Scholar
  35. 35.
    Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243CrossRefGoogle Scholar
  36. 36.
    Wilkes J, Hagedorn YC, Meiners W, Wissenbach K (2013) Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting. Rapid Prototyp J 19(1):51–57CrossRefGoogle Scholar
  37. 37.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295CrossRefGoogle Scholar
  38. 38.
    D. Manfredi, F. Calignano, E.P. Ambrosio, M. Krishnan et al. (2014) Direct metal laser sintering: an additive manufacturing technology ready to produce lightweight structural parts for robotic applications. La Metallurgia Italiana 105(10): 15–25, ISSN 0026-0843Google Scholar
  39. 39.
    Arcam. (2016) Arcam expands Alcoa’s 3D printing technology portfolio. Delivers Arcam Q20plusGoogle Scholar
  40. 40.
    Arcam. (2016) LAI International Additive Manufacturing team has selected Arcam EBM technology. Available from
  41. 41.
    Hedges, M., Marin, A. B.: 3D aerosol jet printing—adding electronics functionality to RP/RM. DDMC 2012 conference, 14-15.3.12, Berlin, 2012Google Scholar
  42. 42.
    Optomec (2017) LENS blisk repair solutionGoogle Scholar
  43. 43.
    Giffi, C. A., Gangula, B., Illinda, P.: 3D opportunity in the automotive industry: additive manufacturing hits the road contents. 2014Google Scholar
  44. 44.
    Materialise (2018) The Areion by Formula Group T: The world’s first 3D printed race car. Available from
  45. 45.
    Stratasys (2018) BMW: manufacturing jigs and fixtures with FDM. Available from
  46. 46.
    Mok SW, Nizak R, Fu SC, Ho KK, Qin L, Saris DBF, Chan KM, Malda J (2016) From the printer: potential of three-dimensional printing for orthopaedic applications. J Orthop Transl 6:42–49Google Scholar
  47. 47.
    Stratasys (2018) Applications de pointe—Produire des éléments IRM avec la FDM. Available from
  48. 48.
    Arcam (2016) JUST ADD: Arcam—the innovative leader in additive manufacturing solutions for the production of orthopedic implants and aerospace componentsGoogle Scholar
  49. 49.
    Stratasys (2018) Clinical training models. Available from
  50. 50.
    Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotech 34(3):312–319CrossRefGoogle Scholar
  51. 51.
    Finnie I, Altan T, Dornfeld DA, Eagar TW, German RM, Jones MG (1995) Unit manufacturing process: issues and opportunities in research. National Academy of SciencesGoogle Scholar
  52. 52.
    Gibson I, Rosen D, Stucker B (2015) Introduction and basic principles. In: Additive manufacturing technologies. Springer, New York, NYCrossRefGoogle Scholar
  53. 53.
    Lieneke T, Denzer V, Adam GAO, Zimmer D (2016) Dimensional tolerances for additive manufacturing: experimental for fused deposition modeling. Procedia CIRP 43:286–291CrossRefGoogle Scholar
  54. 54.
    Lieneke, T., Adam, G. A. O., Leuders, S., Knoop, F., Josupeit, S, Delfs, P, Funke, N, Zimmer, D: Systematical determination of tolerances for additive manufacturing by measuring linear dimensions. In: 26th Annu Int Solid Free Fabr Symp, pp. 371–384, 2015Google Scholar
  55. 55.
    Bonnard, R.: Proposition de chaine numerique pour la fabrication additive. Ecole Centrale de Nantes, 2010Google Scholar
  56. 56.
    Pandey PM, Reddy NV, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9(5):274–288CrossRefGoogle Scholar
  57. 57.
    Wang DX, Guo DM, Jia ZY, Leng H (2006) Slicing of CAD models in color STL format. Comput Ind 57(1):3–10CrossRefGoogle Scholar
  58. 58.
    Pei E (2014) 4D printing—revolution or fad? Assem Autom 34(2):123–127CrossRefGoogle Scholar
  59. 59.
    Stratasys (2018) 4D printing: revolutionizing material form and control. Available from
  60. 60.
    R. Bogue. Assembly automation, 29/3, shape-memory materials: a review of technology and applications, pp. 214–219. Emerald Publishing Limited.Google Scholar
  61. 61.
    Self-Assembly Lab. (2018) Available from
  62. 62.
    Ge Q, Dunn CK, Qi HJ, Dunn ML (2014) Active origami by 4D printing. Smart Mater Struct 23:15Google Scholar
  63. 63.
    Bogue R (2009) Shape-memory materials: a review of technology and applications. Assem Autom 29:214–219CrossRefGoogle Scholar
  64. 64.
    Khoo ZX, Ee J, Mei Teoh JE, Liu Y, Chua CK, Yang S, An J (2015) 3D printing of smart materials : a review on recent progresses in 4D printing. Virtual Phys. PRO 10:103–122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Team in Engineering, Innovation, and Management of Industrial Systems (EIMIS)Faculty of Sciences and Techniques (FSTT)TangierMorocco
  2. 2.Laboratoire de Conception Fabrication Commande LCFCEcole Nationale Supérieure d’Arts et MétiersMetzFrance

Personalised recommendations