Product-service system (PSS) complexity metrics within mass customization and Industry 4.0 environment

Abstract

The design and evaluation of product-service systems (PSS) constitutes a challenging problem due to its multidimensionality. This challenge becomes bigger when the PSS customization is required within the new manufacturing paradigm of Industry 4.0. Nevertheless, limited literature work is observed regarding the customization of PSS and the PSS investigation within the Industry 4.0. Towards bridging these gaps, the present research work proposes a methodology for the quantification of PSS customization complexity, considering Industry 4.0 aspects. The proposed metrics are applied in a real industrial case study from a large laser machining industry, aiming to evaluate the different PSS alternatives in terms of complexity. It is demonstrated that the proposed approach can support the strategic level decision-making of a company, by quantifying the complexity and producing additional meaningful information towards the selection of the product and services that could be designed and offered to the customers.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Mourtzis D, Doukas M (2014) The evolution of manufacturing systems: from craftsmanship to the era of customisation. In: Handbook of Research on Design and Management of Lean Production Systems, US, America

  2. 2.

    Meier H, Roy R, Seliger G (2010) Industrial product-service systems-IPS2. CIRP Ann Manuf Technol 59:607–627. https://doi.org/10.1016/j.cirp.2010.05.004

    Article  Google Scholar 

  3. 3.

    Shimomura Y, Nemoto Y, Kimita K (2015) A method for analyzing conceptual design process of product-service systems. CIRP Ann Manuf Technol 64:145–148. https://doi.org/10.1016/j.cirp.2015.04.035

    Article  Google Scholar 

  4. 4.

    Goedkoop MJ et al (1999) Product service systems, ecological and economic basics. Pre Consult Amersfoort. https://doi.org/10.1111/j.1365-294X.2004.02125.x

  5. 5.

    Lee S et al (2012) Dynamic and multidimensional measurement of product-service system (PSS) sustainability: a triple bottom line (TBL)-based system dynamics approach. J Clean Prod 32:173–182. https://doi.org/10.1016/j.jclepro.2012.03.032

    Article  Google Scholar 

  6. 6.

    Xing K, Wang HF, Qian W (2013) A sustainability-oriented multi-dimensional value assessment model for product-service development. Int J Prod Res 51:5908–5933. https://doi.org/10.1080/00207543.2013.810349

    Article  Google Scholar 

  7. 7.

    Chen D et al (2015) PSS solution evaluation considering sustainability under hybrid uncertain environments. Expert Syst Appl 42:822–5838. https://doi.org/10.1016/j.eswa.2015.04.003

    Google Scholar 

  8. 8.

    Huang GQ et al (2011) Establishing production service system and information collaboration platform for mold and die products. Int J Adv Manuf Technol 52:1149–1160. https://doi.org/10.1007/s00170-010-2762-8

    Article  Google Scholar 

  9. 9.

    Zhu QQ et al (2011) Implementing an industrial product-service system for CNC machine tool. Int J Adv Manuf Technol 52:1133–1147. https://doi.org/10.1007/s00170-010-2761-9

    Article  Google Scholar 

  10. 10.

    Baines TS et al (2007) State-of-the-art in product service-systems. Proc Inst Mech Eng B J Eng Manuf 221:1–11. https://doi.org/10.1243/09544054JEM858

    Google Scholar 

  11. 11.

    Komoto H, Tomiyama T (2008) Integration of a service CAD and a life cycle simulator. CIRP Ann Manuf Technol 57:9–12. https://doi.org/10.1016/j.cirp.2008.03.001

    Article  Google Scholar 

  12. 12.

    Vasantha G et al (2012) A review of product–service systems design methodologies. J Eng Des 23:635–659. https://doi.org/10.1080/09544828.2011.639712

    Article  Google Scholar 

  13. 13.

    Tran T, Park JY (2015) Development of a strategic prototyping framework for product service systems using co-creation approach. Procedia CIRP 30:1–6. https://doi.org/10.1016/j.procir.2015.02.102

    Article  Google Scholar 

  14. 14.

    Chryssolouris G (2006) Manufacturing systems: theory and practice, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  15. 15.

    Pine J (1993) Mass customization: the new frontier in business competition. Harvard Business Press

  16. 16.

    Da Silveira G, Borenstein D, Fogliatto FS (2001) Mass customization: literature review and research directions. Int J Prod Econ 72:1–13. https://doi.org/10.1016/S0925-5273(00)00079-7

    Article  Google Scholar 

  17. 17.

    Hu HA et al (2012) Development of sustainability evaluation model for implementing product service systems. Int J Environ Sci Technol 9:343–354. https://doi.org/10.1007/s13762-012-0037-7

    Article  Google Scholar 

  18. 18.

    Papakostas N, Makris S, Xanthakis V, Chryssolouris G (2008) Supply chain modeling and control for producing highly customized products. CIRP Ann Manuf Technol 57:451–454. https://doi.org/10.1016/j.cirp.2008.03.106

    Article  Google Scholar 

  19. 19.

    Mourtzis D, Doukas M (2013) Decentralized manufacturing systems review: challenges and outlook. Robust Manufacturing Control: Proceedings of the CIRP Sponsored Conference RoMaC 2012 355–369. https://doi.org/10.1007/978-3-642-30,749-2_26.

  20. 20.

    Song W, Sakao T (2016) Service conflict identification and resolution for design of product-service offerings. Comput Ind Eng 98:91–101. https://doi.org/10.1016/j.cie.2016.05.019

    Article  Google Scholar 

  21. 21.

    Kuo TC (2013) Mass customization and personalization software development: a case study eco-design product service system. J Intell Manuf 24:1019–1031. https://doi.org/10.1007/s10845-012-0643-8

    Article  Google Scholar 

  22. 22.

    Tu JC et al (2013) Construction of customization development procedures in product service systems. J Ind Product Eng 30:303–326. https://doi.org/10.1080/21681015.2013.838807

    Article  Google Scholar 

  23. 23.

    Waltemode S, Mannweiler C, Aurich JC (2012) Life cycle oriented quality assessment of technical product-service systems. Leveraging Technol Sustain World:49–54. https://doi.org/10.1007/978-3-642-29069-5_9

  24. 24.

    Geum Y, Park Y (2011) Designing the sustainable product-service integration: a product-service blueprint approach. J Clean Prod 19:1601–1614. https://doi.org/10.1016/j.jclepro.2011.05.017

    Article  Google Scholar 

  25. 25.

    Dong M, Yang D, Su L (2011) Ontology-based service product configuration system modeling and development. Expert Syst Appl 38:11770–11,786. https://doi.org/10.1016/j.eswa.2011.03.064

    Article  Google Scholar 

  26. 26.

    Mourtzis D, Fotia S, Vlachou E, Koutoupes A (2017) A lean PSS design and evaluation framework supported by KPI monitoring and context sensitivity tools. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-0132-5

  27. 27.

    Sousa-Zomer TT, Miguel PAC (2017) A QFD-based approach to support sustainable product-service systems conceptual design. Int J Adv Manuf Technol 88:701–717. https://doi.org/10.1007/s00170-016-8809-8

    Article  Google Scholar 

  28. 28.

    Monostori L et al (2016) Cyber-physical systems in manufacturing. CIRP Ann Manuf Technol 65:621–641. https://doi.org/10.1016/j.cirp.2016.06.005

    Article  Google Scholar 

  29. 29.

    Lee J, Bagheri B, Kao H (2015) A cyber-physical systems architecture for Industry 4 .0-based manufacturing systems. Manuf Lett 3:18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  30. 30.

    Wang S et al (2016) Towards smart factory for industry 4.0: a self-organized multi-agent system with big data base d feedback and coordination. Comput Netw 101:158–168. https://doi.org/10.1016/j.comnet.2015.12.017

    Article  Google Scholar 

  31. 31.

    Mourtzis D et al (2016) Applications for frugal product customization and design of manufacturing networks. Procedia CIRP 52:228–233. https://doi.org/10.1016/j.procir.2016.07.055

    Article  Google Scholar 

  32. 32.

    Mourtzis D et al (2016) Cloud-based adaptive process planning considering availability and capabilities of machine tools. J Manuf Syst 39:1–8. https://doi.org/10.1016/j.jmsy.2016.01.003

    Article  Google Scholar 

  33. 33.

    Bajestani MA, Banjevic D, Beck JC (2014) Integrated maintenance planning and production scheduling with Markovian deteriorating machine conditions. Int J Product Res Taylor Francis 52:7377–7400. https://doi.org/10.1080/00207543.2014.931609

    Article  Google Scholar 

  34. 34.

    Tien JM (2012) The next industrial revolution: integrated services and goods. J Syst Sci Syst Eng 21:257–296. https://doi.org/10.1007/s11518-012-5194-1

    Article  Google Scholar 

  35. 35.

    Renu RS, Mocko G, Koneru A (2013) Use of big data and knowledge discovery to create data backbones for decision support systems. Procedia Comput Sci 20:446–453. https://doi.org/10.1016/j.procs.2013.09.301

    Article  Google Scholar 

  36. 36.

    Elmaraghy W et al (2012) Complexity in engineering design and manufacturing. CIRP Annals - Manufacturing Technology. CIRP 61(2):793–814. https://doi.org/10.1016/j.cirp.2012.05.001

    Article  Google Scholar 

  37. 37.

    Chryssolouris G, Vassiliou E, Mavrikios D (2006) Application of information theory to the quantification of concurrent engineering processes. 13th International Conference on Concurrent Engineering (ISPE) 679–695

  38. 38.

    Efthymiou K et al (2012) Manufacturing systems complexity review: challenges and outlook. Procedia CIRP 3:644–649. https://doi.org/10.1016/j.procir.2012.07.110

    Article  Google Scholar 

  39. 39.

    ElMaraghy H et al (2013) Product variety management. CIRP Ann Manuf Technol 62:629–652. https://doi.org/10.1016/j.cirp.2013.05.007

    Article  Google Scholar 

  40. 40.

    Mourtzis D, Fotia S, Boli N (2017) Metrics definition for the product-service system complexity within mass customization and industry 4.0 environment. ICE IEEE 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC) 1207–1213

  41. 41.

    Mourtzis D, Fotia S, Boli N, Vlachou E (2017) An approach for the modeling and quantification of PSS customisation. Int J Prod Res:1–17. https://doi.org/10.1080/00207543.2017.1378956

  42. 42.

    Erkoyuncu JA et al (2011) Understanding service uncertainties in industrial product-service system cost estimation. Int J Adv Manuf Technol 52:1223–1238. https://doi.org/10.1007/s00170-010-2767-3

    Article  Google Scholar 

  43. 43.

    Alexopoulos K, Koukas S, Boli N, Mourtzis D (2017) Resource planning for the installation of industrial product service systems. Adv Product Manag Syst:205–213. https://doi.org/10.1007/978-3-319-66926-7_24

Download references

Acknowledgements

This work has been partially supported by the H2020 EC funded project “An Integrated Collaborative Platform for Managing the Product-Service Engineering Lifecycle – ICP4Life” (GA No. 636862).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dimitris Mourtzis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mourtzis, D., Fotia, S., Boli, N. et al. Product-service system (PSS) complexity metrics within mass customization and Industry 4.0 environment. Int J Adv Manuf Technol 97, 91–103 (2018). https://doi.org/10.1007/s00170-018-1903-3

Download citation

Keywords

  • Complexity
  • Customization
  • Product-service systems (PSS)
  • Industry 4.0