Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu-15Ni-8Sn powder

  • Gengming Zhang
  • Chao Chen
  • Xiaojun Wang
  • Pengwei Wang
  • Xiaoyong Zhang
  • Xueping Gan
  • Kechao Zhou


In this work, Cu-15Ni-8Sn components were manufactured by selective laser melting (SLM) with a near full density of about 99.4%. The microstructures and phase precipitation of the as-fabricated Cu-15Ni-8Sn alloy were characterized by X-ray diffraction (XRD), electron probe microanalyzer (EPMA), electron back-scattered diffraction (EBSD), and transmission electron microscope (TEM). It was demonstrated that the as-fabricated Cu-15Ni-8Sn alloy shows α-phase with γ-precipitates by XRD and TEM. The size of the grains of α-phase is in the range of 5~20 μm with random orientation distribution. The γ-precipitate is a Sn- and Ni-rich phase distributed dispersedly in matrix and accumulatively in grain boundary. The as-fabricated Cu-15Ni-8Sn alloy exhibited yield strength of 522 MPa, ultimate tensile strength of 653 MPa, and elongation of 17%. The excellent mechanical performance of the as-fabricated Cu-15Ni-8Sn alloy is caused by the local laser melting mode including rapid cooling rate and reduplicative fusing from the subsequent layer melting, which leads to refined grains and limited Sn segregation in micron-size within the matrix.


Selective laser melting Cu-15Ni-8Sn Sn segregation γ-precipitates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study received financial support from the National Key R&D Program of China (No. 2017YFB0305800), the National Natural Science Foundation of China (Grant No. 51602350), the China Postdoctoral Science Foundation (2017M610505), the Key Research and Development Program of Hunan province, China (No. 2016JC2003) and the fund of the State Key Laboratory of Powder Metallurgy, Central South University.


  1. 1.
    Tylecote RF (2002) A history of metallurgy. Maney-Publishing, LondonGoogle Scholar
  2. 2.
    Zhao JC, Notis MR (1998) Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy. Acta Mater 46:4203–4218CrossRefGoogle Scholar
  3. 3.
    Cookey RH, Wood JV (1990) Microstructure and mechanical properties of osprey processed Cu–15Ni–8Sn alloy. Powder Metall 33:335–338CrossRefGoogle Scholar
  4. 4.
    Cribb WR, Gedeon MJ, Grensing FC (2013) Performance advances in copper-nickel-tin spinodal alloys. Adv Mater Process 171:20–25Google Scholar
  5. 5.
    Lefevre BG, D’Annessa AT, Kalish D (1978) Age hardening in Cu-15Ni-8Sn alloy. Metall Trans A 9A:577–586CrossRefGoogle Scholar
  6. 6.
    Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426CrossRefGoogle Scholar
  7. 7.
    Ouyang Y, Gan XP, Zhang SZ, Li Z, Zhou KC, Jiang YX, Zhang XW (2017) Aged-hardening behavior and microstructure of Cu-15Ni-8Sn-0.3Nb alloy prepared by powder metallurgy and hot extrusion. Trans Nonferrous Metals Soc China 27:1947–1955CrossRefGoogle Scholar
  8. 8.
    Miki M, Ogino Y (1984) Precipitation in a Cu-20%Ni-8%Sn alloy and the phase diagram of the Cu-Ni rich Cu-Ni-Sn system. Trans JIM 9:593–602CrossRefGoogle Scholar
  9. 9.
    Zhang H, He YZ, Yuan XM, Pan Y (2010) Microstructure and age characterization of Cu-15Ni-8Sn alloy coating by laser cladding. Appl Surf Sci 256:5837–5842CrossRefGoogle Scholar
  10. 10.
    Popovich A, Sufiiarov V, Polozovn I, Borisov E, Masaylo D, Orlov A (2016) Microstructure and mechanical properties of additive manufactured copper alloy. Mater Lett 17:938–941Google Scholar
  11. 11.
    Chen L, He Y, Yang YX, Niu SW, Ren HT (2017) The research status and development trend of additive manufacturing technology. Int J Adv Manuf Technol 89:3651–3660CrossRefGoogle Scholar
  12. 12.
    Mancanares CG, Zancul ED, da Silva JC, Miguel PAC (2015) Additive manufacturing process selection based on parts’ selection criteria. Int J Adv Manuf Technol 80:1007–1014CrossRefGoogle Scholar
  13. 13.
    Kunze K, Etter T, Grässlin J, Shklover V (2014) Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng A 620:213–222CrossRefGoogle Scholar
  14. 14.
    Ni M, Chen C, Wang XJ, Wang PW, Li RD, Zhang XY, Zhou KC (2017) Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater Sci Eng A 701:344–351CrossRefGoogle Scholar
  15. 15.
    Sander J, Hufenbach J, Giebeler L, Bleckmann M, Eckert J, Kuhn U (2017) Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Scr Mater 126:41–44CrossRefGoogle Scholar
  16. 16.
    AlMangour B, Yang JM (2017) Understanding the deformation behavior of 17-4 precipitate hardenable stainless steel produced by direct metal laser sintering using micropillar compression and TEM. Int J Adv Manuf Technol 90:119–126CrossRefGoogle Scholar
  17. 17.
    Sun ZJ, Tan XP, Tor SB, Yeong WY (2016) Selective laser melting of stainless steel 316L with low porosity and high build rate. Mater Des 104:197–204CrossRefGoogle Scholar
  18. 18.
    Swee LS, Wai YY, Wiria FE (2016) Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloys Compd 660:461–470CrossRefGoogle Scholar
  19. 19.
    Basalah A, Esmaeili S, Toyserkani E (2016) Mechanical properties of additive-manufactured porous titanium bio-structures with oriented macro-scale channels. Int J Adv Manuf Technol 84:2239–2246CrossRefGoogle Scholar
  20. 20.
    Roy S, Das M, Mallik AK, Balla VK (2016) Laser melting of titanium-diamond composites: microstructure and mechanical behavior study. Mater Lett 178:284–287CrossRefGoogle Scholar
  21. 21.
    Vrancken B, Thijs L, Kruth J-P, Humbeeck JV (2014) Microstructure and mechanical properties of a novel b titanium metallic composite by selective laser melting. Acta Mater 68:150–158CrossRefGoogle Scholar
  22. 22.
    Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R (2009) Solidification microstructures and solid-state parallel: recent developments, further direction. Acta Mater 57:941–971CrossRefGoogle Scholar
  23. 23.
    Zhang DQ, Liu ZH, Cai QZ, Liu JH, Chua CK (2014) Influence of Ni content on microstructure of W-Ni alloy produced by selective laser melting. Int J Refract Met Hard Mater 45:15–22CrossRefGoogle Scholar
  24. 24.
    Schubert K, Burkhardt W, Esslinger P, Günzel E, Meissner HG, Schütt W, Wegst J, Wilkens M (1956) Einige strukturelle Ergebnisse an metallischen Phasen. Naturwissenschaften 43:248–249CrossRefGoogle Scholar
  25. 25.
    Schmetterer C, Flandorfer H, Richter KW, Saeed U, Kauffman M, Roussel P, Ipser H (2007) A new investigation of the system Ni-Sn. Intermetallics 15:869–894CrossRefGoogle Scholar
  26. 26.
    Sahu P, Pradhan SK, De M (2004) X-ray diffraction studies of the decomposition and microstructural characterization of cold-worked powders of Cu-15Ni-8Sn alloys by Rietveld analysis. J Alloys Compd 377:103–116CrossRefGoogle Scholar
  27. 27.
    Kim HY, Jinguu T, Nam TH, Miyazaki S (2011) Cold workability and shape memory properties of novel Ti-Ni-Hf-Nb high temperature shape memory alloys. Scr Mater 65:846–849CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Hunan Farsoon High-Tech Co, LtdChangshaChina

Personalised recommendations