Liquid film characteristic in fluid hydrodynamic fixed abrasive grinding

  • Pengfei Liu
  • Bin Lin
  • Yan Li
  • Xiaofeng Zhang
  • Jixiong Fei
ORIGINAL ARTICLE
  • 7 Downloads

Abstract

Fluid hydrodynamic fixed abrasive grinding (FHFAG) process is a promising finishing method for large optical elements which has been proposed in early research. However, liquid film characteristic remains unqualified given its complex working condition. In this research, the liquid film in the microchannel is used in a novel perspective. A fully coupled flow deformation model for fluid media subject to elasto-plastic rough surfaces is presented. This model predicts the concrete situation including dynamic pressure distribution and basic film thickness of the liquid flow in microchannel. A preliminary experiment has been done to verify the correctness. Our result shows that the liquid film can exist in the microchannel stably; there is a controllable mapping relation between the working parameters and the liquid film characteristics.

Keywords

Hydrodynamic grinding Fixed abrasive Liquid film Controllable mapping relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mori Y, Yamauchi Y, Yamamura K, Mimura H, Saito A, Kishimoto H, Sekito Y, Kanaoka M, Souvorov A, Yabashi M Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics. In: International Symposium on Optical Science and Technology, 2001. International Society for Optics and Photonics, pp 30–42Google Scholar
  2. 2.
    Martin HM, Angel JRP, Cheng AYS Use of an actively stressed lap to polish a 1.8-m F/1 paraboloid. In: Very large telescopes and their instrumentation, Vol. 1, 1988. pp 353–361Google Scholar
  3. 3.
    Kordonski W, Golini D (1999) Fundamentals of magnetorheological fluid utilization in high precision finishing. J Intell Mater Syst Struct 10(9):683–689CrossRefGoogle Scholar
  4. 4.
    Jones RA (1995) Computer simulation of smoothing during computer-controlled optical polishing. Appl Opt 34(7):1162–1169CrossRefGoogle Scholar
  5. 5.
    Golini D Precision optics manufacturing using magnetorheological finishing (MRF). In: Optical systems design and production, 1999. International Society for Optics and Photonics, pp 78–85Google Scholar
  6. 6.
    Fähnle OW, Van Brug H, Frankena HJ (1998) Fluid jet polishing of optical surfaces. Appl Opt 37(28):6771–6773CrossRefGoogle Scholar
  7. 7.
    Drueding TW, Fawcett SC, Wilson SR, Bifano TG (1995) Ion beam figuring of small optical components. Opt Eng 34(12):3565–3571CrossRefGoogle Scholar
  8. 8.
    Bingham RG, Walker DD, Kim D-H, Brooks D, Freeman R, Riley D Novel automated process for aspheric surfaces. In: International Symposium on Optical Science and Technology, 2000. International Society for Optics and Photonics, pp 445–450Google Scholar
  9. 9.
    Lo WC, Tsai KM, Hsieh CY (2009) Six Sigma approach to improve surface precision of optical lenses in the injection-molding process. Int J Adv Manuf Technol 41(9):885–896.  https://doi.org/10.1007/s00170-008-1543-0 CrossRefGoogle Scholar
  10. 10.
    Nguyen MD, Rahman M, Wong YS (2012) An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int J Adv Manuf Technol 58(5):533–544.  https://doi.org/10.1007/s00170-011-3397-0 CrossRefGoogle Scholar
  11. 11.
    Abdulkadir LN, Abou-El-Hossein K, Jumare AI, Odedeyi PB, Liman MM, Olaniyan TA (2018) Ultra-precision diamond turning of optical silicon—a review. Int J Adv Manuf Technol.  https://doi.org/10.1007/s00170-017-1529-x
  12. 12.
    Moriyama S, Kawamura Y, Homma Y, Kusukawa K, Furusawa T (1997) Polishing method. Google Patents,Google Scholar
  13. 13.
    Liu P, Lin B, Zhang X, Li Y (2017) Fluid hydrodynamic fixed abrasive grinding based on a small tool. Appl Opt 56(5):1453–1459.  https://doi.org/10.1364/AO.56.001453 CrossRefGoogle Scholar
  14. 14.
    Campbell I, Turner J (1985) Turbulent mixing between fluids with different viscosities. Nature 313(5997):39–42CrossRefGoogle Scholar
  15. 15.
    Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389(6649):360–362CrossRefGoogle Scholar
  16. 16.
    Bahrami M, Yovanovich M, Culham J (2006) Pressure drop of fully-developed, laminar flow in microchannels of arbitrary cross-section. J Fluids Eng 128(5):1036–1044CrossRefMATHGoogle Scholar
  17. 17.
    Hryniewicz P, Szeri AZ, Jahanmir S (2001) Application of lubrication theory to fluid flow in grinding: Part II—influence of wheel and workpiece roughness. J Tribol 123(1):101–107CrossRefGoogle Scholar
  18. 18.
    Hryniewicz P, Szeri AZ, Jahanmir S, Hryniewicz P (2001) Application of lubrication theory to fluid flow in grinding: Part I—flow between smooth surfaces. J Tribol 123(1):94–100CrossRefMATHGoogle Scholar
  19. 19.
    Jiang X, Zhou Z, Yao J, Li Y, Ye X Micro-fluid flow in microchannel. In: Solid-state sensors and actuators, 1995 and eurosensors IX.. Transducers’ 95. The 8th International Conference on, 1995. IEEE, pp 317–320Google Scholar
  20. 20.
    Koo J, Kleinstreuer C (2003) Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects. J Micromech Microeng 13(5):568–579CrossRefGoogle Scholar
  21. 21.
    Hetsroni G, Mosyak A, Pogrebnyak E, Yarin L (2005) Fluid flow in micro-channels. Int J Heat Mass Transf 48(10):1982–1998CrossRefGoogle Scholar
  22. 22.
    Ludviksson V, Lightfoot E (1971) The dynamics of thin liquid films in the presence of surface-tension gradients. AICHE J 17(5):1166–1173CrossRefGoogle Scholar
  23. 23.
    Johnson KL, Greenwood J, Poon SY (1972) A simple theory of asperity contact in elastohydro-dynamic lubrication, vol 19. doi: https://doi.org/10.1016/0043-1648(72)90445-0
  24. 24.
    Liu JY, Tallian TE, McCool JI (1975) Dependence of bearing fatigue life on film thickness to surface roughness ratio. A S L E Transactions 18(2):144–152.  https://doi.org/10.1080/05698197508982757 CrossRefGoogle Scholar
  25. 25.
    Akamatsu Y, Tsushima N, Goto T, Hibi K (1992) Influence of surface roughness skewness on rolling contact fatigue life. Tribol Trans 35(4):745–750.  https://doi.org/10.1080/10402009208982180 CrossRefGoogle Scholar
  26. 26.
    Burton RA (1963) Effects of two-dimensional, sinusoidal roughness on the load support characteristics of a lubricant film. J Fluids Eng 85(2):258Google Scholar
  27. 27.
    Tzeng ST, Saibel E (1967) Surface roughness effect on slider bearing lubrication. Tribol Trans 10(3):334–348Google Scholar
  28. 28.
    Christensen H, Tonder KC (1971) The hydrodynamic lubrication of rough bearing surfaces of finite width. J Tribol 93(3):324Google Scholar
  29. 29.
    Christensen H, Tonder K (1973) The hydrodynamic lubrication of rough journal bearings. J Tribol 95(2):166Google Scholar
  30. 30.
    Liu P, Lin B, Yan S, Li Y, Wang B (2016) Numerical simulation and experimental validation of fixed abrasive grinding pad topography. Int J Adv Manuf Technol 83(5):1–12Google Scholar
  31. 31.
    Johnson K (1974) Contact mechanics, 1985. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Hertz H (1895) Ueber die Beruehrung elastischer Koerper (On Contact of Elastic Bodies). Gesammelte Werke (Collected Works) 1Google Scholar
  33. 33.
    Hamrock BJ, Dowson D (1977) Isothermal elastohydrodynamic lubrication of point contacts: Part III—fully flooded results. J Lubr Technol 99(2):264–275.  https://doi.org/10.1115/1.3453074 CrossRefGoogle Scholar
  34. 34.
    Hamrock BJ, Dowson D (1976) Isothermal elastohydrodynamic lubrication of point contacts: Part II—Ellipticity parameter results. J Lubr Technol 98(3):375–381.  https://doi.org/10.1115/1.3452861 CrossRefGoogle Scholar
  35. 35.
    Hamrock BJ, Dowson D (1976) Closure to “discussions of ‘isothermal elastohydrodynamic lubrication of point contacts: Part 1—theoretical formulation’” (1976, ASME J. Lubr. Technol., 98, p. 228). J Lubr Technol 98(2):228–229.  https://doi.org/10.1115/1.3452804 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Pengfei Liu
    • 1
  • Bin Lin
    • 1
  • Yan Li
    • 1
  • Xiaofeng Zhang
    • 1
  • Jixiong Fei
    • 1
  1. 1.Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of EducationTianjin UniversityTianjinChina

Personalised recommendations