Skip to main content
Log in

Microstructure and mechanical property improvement of X70 in asymmetrical thermomechanical rolling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Asymmetrical thermomechanical rolling (ATMR) process of API X70 microalloy steel was investigated to evaluate of rolling force and distribution of material property in the roll gap. Applying a user-defined VUMAT subroutine, the equations of material flow and microstructure kinetics, as material genome package, were implemented into finite element (FE) solver of ABAQUS for simulation of X70 multi-pass rolling. A rough rolling schedule was carried out to verify the accuracy of the material genome by evaluation of the computed rolling force of FE model and experimental results. Considering the interaction of the asymmetrical parameters such as rolls speed ratio (VA), pass height (PH) and rolls diameter ratio, it was found that coinciding of the high level PH with high range of rolls speed ratio and diameter ratio lead to a rise of the rolling force. Strain distribution of the roll gap indicated that an increase of the rolls speed ratio can improve the dislocation density and the strength of rolled material. The study of strain distribution contour in the length of slab thickness revealed that the homogeneity of deformation can be enhanced in the mechanism of asymmetrical rolling of microalloy steel. Experimental test reveals that in asymmetry condition in TMR process of X70, increase of the speed ratio (1.02–1.05) in roughing passes leads to a considerable grain refinement and growth of yield strength and ultimate tensile strength of 3.12 and 2.05% of final plate structure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao SL, Zhang Z, Qu LC, Zhang J, Wang JM, Wang SH (2015) Effects of heat treatment process on mechanical properties of X70 grade pipeline steel bends. In: Applied Mechanics and Materials. Trans Tech Publ, pp 322–326

  2. Halfa H (2014) Recent trends in producing ultrafine grained steels. J Miner Mater Charact Eng 2014

  3. Li Q, Liu Z-d, Tang G-B, Tian Z-l, Fulio S (2010) Mathematical model of microstructure evolution of X60 line pipe steel during CSP hot rolling. J Iron Steel Res Int 17(1):70–78. https://doi.org/10.1016/S1006-706X(10)60048-9

    Article  Google Scholar 

  4. Wang J, Atrens A (2003) Microstructure and grain boundary microanalysis of X70 pipeline steel. J Mater Sci 38(2):323–330

    Article  Google Scholar 

  5. Liu Y, Lin J (2003) Modelling of microstructural evolution in multipass hot rolling. J Mater Process Technol 143:723–728

    Article  Google Scholar 

  6. Phaniraj MP, Behera BB, Lahiri AK (2005) Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill: part I. Prediction of rolling loads and finish rolling temperature. J Mater Process Technol 170(1):323–335

    Article  Google Scholar 

  7. Phaniraj MP, Behera BB, Lahiri AK (2006) Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill: part-II. Microstructure evolution. J Mater Process Technol 178(1–3):388–394. https://doi.org/10.1016/j.jmatprotec.2006.03.173

    Article  Google Scholar 

  8. Wang M-T, Zang X-I, Li X-T, Du F-S (2007) Finite element simulation of hot strip continuous rolling process coupling microstructural evolution. J Iron Steel Res Int 14(3):30–36. https://doi.org/10.1016/S1006-706X(07)60039-9

    Article  Google Scholar 

  9. Zhang GL, Zhang SH, Liu JS, Zhang HQ, Li CS, Mei RB (2009) Initial guess of rigid plastic finite element method in hot strip rolling. J Mater Process Technol 209(4):1816–1825. https://doi.org/10.1016/j.jmatprotec.2008.04.038

    Article  Google Scholar 

  10. Bianchi JH, Langellotto L, Díaz Alvarez J (2013) Strip cooling optimization by means of fully coupled thermo-mechanical-metallurgical 3D model. Paper presented at the SIMULIA Community Conference, Vienna

  11. Nalawade RS, Puranik AJ, Balachandran G, Mahadik KN, Balasubramanian V (2013) Simulation of hot rolling deformation at intermediate passes and its industrial validity. Int J Mech Sci 77(0):8–16. https://doi.org/10.1016/j.ijmecsci.2013.09.017

    Article  Google Scholar 

  12. Wang X-D, Li F, Jiang Z-Y (2012) Thermal, microstructural and mechanical coupling analysis model for flatness change prediction during run-out table cooling in hot strip rolling. J Iron Steel Res Int 19(9):43–51. https://doi.org/10.1016/S1006-706X(13)60007-2

    Article  Google Scholar 

  13. Wang X, Li F, Yang Q, He A (2013) FEM analysis for residual stress prediction in hot rolled steel strip during the run-out table cooling. Appl Math Model 37(1–2):586–609. https://doi.org/10.1016/j.apm.2012.02.042

    Article  MathSciNet  MATH  Google Scholar 

  14. Qingqiang H, Jia S, Chengxin Y, Junyou Z, Zongbo Z (2013) Thermo-mechanical modeling and simulation of microstructure evolution in multi-pass H-shape rolling. Finite Elem Anal Des 76:13–20. https://doi.org/10.1016/j.finel.2013.08.005

    Article  Google Scholar 

  15. Chen M-S, Lin YC, Li K-K, Zhou Y (2016) A new method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy. Comput Mater Sci 122:150–158. https://doi.org/10.1016/j.commatsci.2016.05.016

    Article  Google Scholar 

  16. Zhang S, Zhao D, Gao C (2012) The calculation of roll torque and roll separating force for broadside rolling by stream function method. Int J Mech Sci 57(1):74–78

    Article  Google Scholar 

  17. Sayadi H, Serajzadeh S (2015) Prediction of thermal responses in continuous hot strip rolling processes. Prod Eng Res Devel 9(1):79–86. https://doi.org/10.1007/s11740-014-0577-4

    Article  Google Scholar 

  18. Aboutorabi A, Assempour A, Afrasiab H (2016) Analytical approach for calculating the sheet output curvature in asymmetrical rolling: in the case of roll axis displacement as a new asymmetry factor. Int J Mech Sci 105:11–22

    Article  Google Scholar 

  19. Ma G-S, Liu Y-M, Peng W, Yin F-C, Ding J-G, Zhao D-W, Di H-S, Zhang D-H (2015a) A new model for thermo-mechanical coupled analysis of hot rolling. J Braz Soc Mech Sci Eng 39:1–8. https://doi.org/10.1007/s40430-015-0390-9

    Google Scholar 

  20. Zhang D-H, Liu Y-M, Sun J, Zhao D-W (2016) A novel analytical approach to predict rolling force in hot strip finish rolling based on cosine velocity field and equal area criterion. Int J Adv Manuf Technol 84(5–8):843–850

    Google Scholar 

  21. Liu Y-M, Ma G-S, Zhang D-H, Zhao D-W (2015) Upper bound analysis of rolling force and dog-bone shape via sine function model in vertical rolling. J Mater Process Technol 223:91–97

    Article  Google Scholar 

  22. Salimi M, Sassani F (2002) Modified slab analysis of asymmetrical plate rolling. Int J Mech Sci 44(9):1999–2023

    Article  MATH  Google Scholar 

  23. Salimi M, Kadkhodaei M (2004) Slab analysis of asymmetrical sheet rolling. J Mater Process Technol 150(3):215–222

    Article  Google Scholar 

  24. Gudur P, Salunkhe M, Dixit U (2008) A theoretical study on the application of asymmetric rolling for the estimation of friction. Int J Mech Sci 50(2):315–327

    Article  MATH  Google Scholar 

  25. Razani NA, Mollaei Dariani B, Soltanpour M (2018) Analytical approach of asymmetrical thermomechanical rolling by slab method. Int J Adv Manuf Technol 94(1):175–189. https://doi.org/10.1007/s00170-017-0801-4

    Article  Google Scholar 

  26. Farhatnia F, Salimi M, Movahhedy MR (2006) Elasto-plastic finite element simulation of asymmetrical plate rolling using an ALE approach. J Mater Process Technol 177(1–3):525–529. https://doi.org/10.1016/j.jmatprotec.2006.04.075

    Article  Google Scholar 

  27. Tang D, Liu X, Song M, Yu H (2014) Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling. PLoS One 9(9):e106637

    Article  Google Scholar 

  28. Wronski M, Wierzbanowski K, Bacroix B, Lipinski P (2015) Asymmetric rolling textures of aluminium studied with crystalline model implemented into FEM. In: IOP conference series: materials science and engineering. vol 1. IOP, p 012012

  29. Yanagida A, Liu J, Yanagimoto J (2003) Flow curve determination for metal under dynamic recrystallization using inverse analysis. Mater Trans 44(11):2303–2310

    Article  Google Scholar 

  30. Yanagida A, Yanagimoto J (2005) Regression method of determining generalized description of flow curve of steel under dynamic recrystallization. ISIJ Int 45(6):858–866

    Article  Google Scholar 

  31. Soltanpour M, Yanagimoto J (2012) Material data for the kinetics of microstructure evolution of Cr–Mo–V steel in hot forming. J Mater Process Technol 212(2):417–426. https://doi.org/10.1016/j.jmatprotec.2011.10.004

    Article  Google Scholar 

  32. Nishioka K, Ichikawa K (2012) Progress in thermomechanical control of steel plates and their commercialization. Sci Technol Adv Mater 13(2):023001

    Article  Google Scholar 

  33. Tang D, Xu YW, Song Y, Wang L (2013) Static recrystallization kinetics model of X70 pipeline steel. In: Applied mechanics and materials,. Trans Tech Publ, pp 3–8

  34. Sha Q, Li G, Li D (2013) Static recrystallized grain size of coarse-grained austenite in an API-X70 pipeline steel. J Mater Eng Perform 22(12):3626–3630

    Article  Google Scholar 

  35. Yue C-X, Zhang L-W, Ruan J-h, H-j G (2010) Modelling of recrystallization behavior and austenite grain size evolution during the hot rolling of GCr15 rod. Appl Math Model 34(9):2644–2653. https://doi.org/10.1016/j.apm.2009.12.001

    Article  Google Scholar 

  36. Pereda B, Fernandez A, Lopez B, Rodriguez-Ibabe J (2007) Effect of Mo on dynamic recrystallization behavior of Nb-Mo microalloyed steels. ISIJ Int 47(6):860–868

    Article  Google Scholar 

  37. Medina SF, Quispe A (2001) Improved model for static recrystallization kinetics of hot deformed austenite in low alloy and Nb/V microalloyed steels. ISIJ Int 41(7):774–781

    Article  Google Scholar 

  38. Roucoules C, Yue S, Jones J (1993) Effect of dynamic and metadynamic recrystallization on rolling load and microstructure. In: 1st international conference on modelling of metal rolling processes. pp 165–179

  39. Elwazri A, Essadiqi E, Yue S (2004) Kinetics of metadynamic recrystallization in microalloyed hypereutectoid steels. ISIJ Int 44(4):744–752

    Article  Google Scholar 

  40. Bambach M, Seuren S (2015) On instabilities of force and grain size predictions in the simulation of multi-pass hot rolling processes. J Mater Process Technol 216(0):95–113. https://doi.org/10.1016/j.jmatprotec.2014.07.018

    Article  Google Scholar 

  41. Siciliano Jr F, Jonas JJ (2000) Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. Metall Mater Trans A 31(2):511–530

    Article  Google Scholar 

  42. Hodgson P, Gibbs R (1992) A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ Int 32(12):1329–1338

    Article  Google Scholar 

  43. Laasraoui A, Jonas J (1991) Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip. ISIJ Int 31(1):95–105

    Article  Google Scholar 

  44. Zhou SX (2003) An integrated model for hot rolling of steel strips. J Mater Process Technol 134(3):338–351. https://doi.org/10.1016/S0924-0136(02)01118-4

    Article  Google Scholar 

  45. Moon CH, Lee Y (2012) An approximate method for computing the temperature distribution over material thickness during hot flat rolling. Int J Heat Mass Transf 55(1–3):310–315. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.019

    Article  MATH  Google Scholar 

  46. Da Nóbrega J, Diniz D, Silva A, Maciel T, de Albuquerque V, Tavares J (2016) Numerical evaluation of temperature field and residual stresses in an API 5L X80 steel welded joint using the finite element method. Metals 6(2):28

    Article  Google Scholar 

  47. Pérez A, Corral R, Fuentes R, Colás R (2004) Computer simulation of the thermal behaviour of a work roll during hot rolling of steel strip. J Mater Process Technol 153:894–899

    Article  Google Scholar 

  48. Abaqus I (2014) Abaqus version 6.14 User's manual

  49. Gao C (2009) FE realization of a thermo-visco-plastic constitutive model using VUMAT in ABAQUS/Explicit Program. In: Computational mechanics. Springer, pp 301–301

  50. Philipp M, Schwenzfeier W, Fischer F, Wödlinger R, Fischer C (2007) Front end bending in plate rolling influenced by circumferential speed mismatch and geometry. J Mater Process Technol 184(1):224–232

    Article  Google Scholar 

  51. Kadkhodaei M, Salimi M, Poursina M (2007) Analysis of asymmetrical sheet rolling by a genetic algorithm. Int J Mech Sci 49(5):622–634

    Article  Google Scholar 

  52. Chen M-S, Yuan W-Q, Li H-B, Zou Z-H (2017) Modeling and simulation of dynamic recrystallization behaviors of magnesium alloy AZ31B using cellular automaton method. Comput Mater Sci 136:163–172

    Article  Google Scholar 

  53. Box GE, Wilson K (1992) On the experimental attainment of optimum conditions. In: Breakthroughs in Statistics Springer, pp 270–310

  54. Lee K-M, Lee H-C (2010) Grain refinement and mechanical properties of asymmetrically rolled low carbon steel. J Mater Process Technol 210(12):1574–1579. https://doi.org/10.1016/j.jmatprotec.2010.05.004

    Article  Google Scholar 

  55. Ma R, Wang L, Wang YN, Zhou DZ (2015b) Microstructure and mechanical properties of the AZ31 magnesium alloy sheets processed by asymmetric reduction rolling. Mater Sci Eng: A 638(supplement C):190–196. https://doi.org/10.1016/j.msea.2015.03.093

    Article  Google Scholar 

  56. JC H (2007) Grain size dependence of yield strength in randomly textured Mg-Al-Zn alloy. Mater Trans 48(2):184–188

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely appreciate the continuous cooperation and encouragement of the heads of R&D and QC management of Khouzestan Oxin Steel Co. (KOSC). The authors are grateful to Mr. Seyed Ehsan Mohsenipour, technical expert of Metallurgical Laboratory of KOSC, for his kind technical assistance and precision metallography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Mollaei Dariani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razani, N.A., Dariani, B.M. & Soltanpour, M. Microstructure and mechanical property improvement of X70 in asymmetrical thermomechanical rolling. Int J Adv Manuf Technol 97, 3981–3997 (2018). https://doi.org/10.1007/s00170-018-1823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1823-2

Keywords

Navigation