Experimental investigations into grinding characteristics of high entropy alloys (HEAs) using micro grinding

  • Liu Yin
  • Gong Ya-dong
  • Zhang Huan
  • Sun Yao
  • Cai Ming


The micro grinding experiments of high entropy alloys (HEAs) (FeCrCoNiMn and Fe40Mn40Co10Cr10) are conducted by using a JX-1A ultra-precision grinding lathe. The micro grinding orthogonal experiment of HEA was carried out, and the effect degree of grinding parameters on normal grinding force, tangential grinding force, and surface roughness value was obtained respectively. In order to further study the micro grinding characteristics of HEAs, grinding force and surface roughness were investigated by single factor experiment. The micro grinding characteristics of different micro grinding tools and different HEAs have been studied experimentally. The mechanism and mode of material removal of HEAs were analyzed by observing the grinding surface and chip morphology of HEAs. The grinding temperature of HEA is simulated by using Deform-2D finite element process simulation system, which is helpful to predict and control the grinding temperature of HEA in. Finally, the wear of micro grinding tools is investigated, which plays an important role in micro grinding of HEAs.


High entropy alloy Micro grinding Orthogonal experiment Single factor experiment Micro grinding force Surface roughness Grinding chip Wear of micro grinding tool 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

The research is supported by the National Natural Science Foundation of China (Nos. 51775100 and 51375082).


  1. 1.
    Huang KH, Yeh JW (1996) A study on multicomponent alloy systems containing equal-mole elements. National Tsing Hua University, HsinchuGoogle Scholar
  2. 2.
    Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303CrossRefGoogle Scholar
  3. 3.
    Yang X, Zhang Y, Liaw PK (2012) Microstructure and compressive properties of TiZrNbMoVx high-entropy alloys. Procedia Engineering 36(6):292–298Google Scholar
  4. 4.
    Zhang Y, Wang XF, Chen GL, Qiao Y (2007) Effect of Ti on microstructure and properties of CoCrCuFeNiTix high-entropy alloys. Annales De Chimie-Science Des Materiaux 32(1):103–104Google Scholar
  5. 5.
    Wang XF, Zhang Y, Qiao Y, Chen GL (2007) Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15(3):357–362CrossRefGoogle Scholar
  6. 6.
    Senkov ON, Wilks GB, Scott JM, Miracle DB (2011) Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19(5):698–706CrossRefGoogle Scholar
  7. 7.
    Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59(1):182–190CrossRefGoogle Scholar
  8. 8.
    Zhang Y (2010) Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites. Mater Sci Forum 654-656:1058–1061CrossRefGoogle Scholar
  9. 9.
    Zhang H, Pan Y, He Y, Jiao H (2011) Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating. Appl Surf Sci 257(6):2259–2263CrossRefGoogle Scholar
  10. 10.
    Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid solution in multi-component alloys. Mater Chem Phys 132(2–3):233–238CrossRefGoogle Scholar
  11. 11.
    Yeh JW (2006) Recent progress in high-entropy alloys. Eur J Control 31(6):633–648Google Scholar
  12. 12.
    Lim XZ (2016) Mixed-up metals make for stronger, tougher, stretchier alloys. Nature 533(7603):306CrossRefGoogle Scholar
  13. 13.
    Zhou YJ, Zhang Y, Wang YL, Chen GL (2007) Solid solution alloys of alcocrfenitix with excellent room-temperature mechanical properties. Appl Phys Lett 90(18):253Google Scholar
  14. 14.
    Tsai MH, Yeh JW (2014) High-entropy alloys: a critical review. Mater Res Lett 2(3):107–123CrossRefGoogle Scholar
  15. 15.
    Dai JB, Ding WF, Zhang LC, Xu JH, Su HH (2015) Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding. Int J Adv Manuf Technol 81(5–8):995–1005CrossRefGoogle Scholar
  16. 16.
    Dai CW, Ding WF, Xu JH, Ding C, Huang GQ (2017) Investigation on size effect of grain wear behavior during grinding nickel-based superalloy Inconel 718. Int J Adv Manuf Technol 91(5–8):2907–2917CrossRefGoogle Scholar
  17. 17.
    Ding WF, Zhang LC, Li Z, Zhu YJ, Su HH, Xu JH (2016) Review on grinding-induced residual stresses in metallic materials. Int J Adv Manuf Technol 88(9–12):2939–2968Google Scholar
  18. 18.
    Ding WF, Barbara L, Zhu YJ, Li Z, Fu YC, Su HH, Xu JH (2017) Review on monolayer CBN superabrasive wheels for grinding metallic materials. Chin J Aeronaut 30(1):109–134CrossRefGoogle Scholar
  19. 19.
    Liu Y, Gong YD, Sun Y, Zhang H, Li Q (2017) Micro grinding characteristics of Zr-based bulk metallic glasses. International Journal of Advanced Manufacturing Technology 1-17 DOI:
  20. 20.
    Jin D, Liu Z (2012) Effect of cutting speed on surface integrity and chip morphology in high-speed machining of PM nickel-based superalloy FGH95. Int J Adv Manuf Technol 60(9–12):893–899CrossRefGoogle Scholar
  21. 21.
    Maher I, Eltaib MEH, Sarhan AAD, El-Zahry RM (2014) Investigation of the effect of machining parameters on the surface quality of machined brass (60/40) in cnc end milling—anfis modeling. Int J Adv Manuf Technol 74(1–4):531–537CrossRefGoogle Scholar
  22. 22.
    Zhao T, Shi Y, Lin X, Duan J, Sun P, Zhang J (2014) Surface roughness prediction and parameters optimization in grinding and polishing process for ibr of aero-engine. Int J Adv Manuf Technol 74(5–8):653–663CrossRefGoogle Scholar
  23. 23.
    Zhu Z, Sun J, Li J, Huang P (2016) Investigation on the influence of tool wear upon chip morphology in end milling titanium alloy Ti6Al4V. Int J Adv Manuf Technol 83(9–12):1477–1485CrossRefGoogle Scholar
  24. 24.
    Li B, Zhu D, Pang J, Yang J (2011) Quadratic curve heat flux distribution model in the grinding zone. Int J Adv Manuf Technol 54(9–12):931–940CrossRefGoogle Scholar
  25. 25.
    Yang Z, Yu Z (2012) Grinding wheel wear monitoring based on wavelet analysis and support vector machine. Int J Adv Manuf Technol 62(1–4):107–121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Liu Yin
    • 1
  • Gong Ya-dong
    • 1
  • Zhang Huan
    • 1
  • Sun Yao
    • 1
  • Cai Ming
    • 1
  1. 1.School of Mechanical Engineering and AutomationNortheastern UniversityShenyangChina

Personalised recommendations