Skip to main content
Log in

How convection on the substrate affects the thermal history of the build in direct laser deposition—finite element analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A transient three-dimensional thermal analysis using finite element method was conducted to determine the effect of varied convection applied on the substrate on the thermal history of a multi-layer/multi-pass (per layer) build in direct laser deposition (DLD) of SS316 steel. The effect of the coefficient of heat convection was studied on thermal cycling, thermal gradient, and the output net heat during the deposition process. The results showed that the convection coefficient on the bottom surface of the substrate has negligible effects on the thermal history of the build, thus proving that this parameter may not be used to control the thermal history, and consequently, the microstructure of the build. The results also showed 12% increase in the dissipated heat from the build to the substrate when the coefficient of heat convection changed from 0 to 10,000 W/m2 K. In comparison to the current knowledge, modeling a multi-layer/multi-pass (per layer) geometry provided a better understanding of the thermal history of the build during the DLD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62. https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  2. Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35. https://doi.org/10.1016/j.addma.2015.07.002

    Article  Google Scholar 

  3. Zhu G, Zhang A, Li D, Tang Y, Tong Z, Lu Q (2011) Numerical simulation of thermal behavior during laser direct metal deposition. Int J Adv Manuf Technol 55:945–954. https://doi.org/10.1007/s00170-010-3142-0

    Article  Google Scholar 

  4. Amine T, Newkirk JW, Liou F (2014) An investigation of the effect of direct metal deposition parameters on the characteristics of the deposited layers. Case Stud Therm Eng 3:21–34. https://doi.org/10.1016/j.csite.2014.02.002

    Article  Google Scholar 

  5. Dai K, Shaw L (2002) Distortion minimization of laser-processed components through control of laser scanning patterns. Rapid Prototyp J 8:270–276. https://doi.org/10.1108/13552540210451732

    Article  Google Scholar 

  6. Amine T, Newkirk JW, Liou F (2015) Methodology for studying effect of cooling rate during laser deposition on microstructure. J Mater Eng Perform 24:3129–3136. https://doi.org/10.1007/s11665-015-1572-4

    Article  Google Scholar 

  7. Costa L, Vilar R, Reti T, Deus AM (2005) Rapid tooling by laser powder deposition: process simulation using finite element analysis. Acta Mater 53:3987–3999. https://doi.org/10.1016/j.actamat.2005.05.003

    Article  Google Scholar 

  8. Zheng B, Zhou Y, Smugeresky JE, Schoenung JM, Lavernia EJ (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. numerical calculations. Metall Mater Trans A 39:2228–2236. https://doi.org/10.1007/s11661-008-9557-7

    Article  Google Scholar 

  9. Neela V, De A (2009) Three-dimensional heat transfer analysis of LENSTM process using finite element method. Int J Adv Manuf Technol 45:935–943. https://doi.org/10.1007/s00170-009-2024-9

    Article  Google Scholar 

  10. Crespo A, Vilar R (2010) Finite element analysis of the rapid manufacturing of Ti–6Al–4V parts by laser powder deposition. Scr Mater 63:140–143. https://doi.org/10.1016/j.scriptamat.2010.03.036

    Article  Google Scholar 

  11. Bontha S, Klingbeil NW, Kobryn PA, Fraser HL (2009) Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures. Mater Sci Eng A 513:311–318. https://doi.org/10.1016/j.msea.2009.02.019

    Article  Google Scholar 

  12. Paul R, Anand S, Gerner F (2014) Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. J Manuf Sci Eng 136:031009–031009–12. doi: https://doi.org/10.1115/1.4026524

  13. Bontha S, Klingbeil NW, Kobryn PA, Fraser HL (2006) Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures. J Mater Process Technol 178:135–142. https://doi.org/10.1016/j.jmatprotec.2006.03.155

    Article  Google Scholar 

  14. Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19. https://doi.org/10.1016/j.addma.2014.10.003

    Article  Google Scholar 

  15. Malukhin K (2008) Shape memory alloy based micro-meso scale manipulator. NORTHWESTERN UNIVERSITY

  16. Malukhin K, Ehmann KF (2007) Identification of direct metal deposition (DMD) process parameters for manufacturing thin wall structures from shape memory alloy (NiTi) powder. Pp 481–488

  17. Malin V, Sciammarella F (2006) Controlling heat input by measuring net power. Weld J Miami Fla 85:44–50

    Google Scholar 

  18. ANSYS® Academic Research Mechanical, Release 17.1, Help System, ANSYS, Inc. http://www.ansys.com/

  19. Labudovic M, Hu D, Kovacevic R (2003) A three dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci 38:35–49. https://doi.org/10.1023/A:1021153513925

    Article  Google Scholar 

  20. Liu H (2014) Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process. MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

  21. IAEA (2009) Thermophysical properties of materials for nuclear engineering: a tutorial and collection of data

  22. Sifullah AM, Nukman Y, Hassan MA, Hossain A (2016) Finite element analysis of fusion laser cutting on stainless Steel-304. ARPN. J Eng Appl Sci 11:181–189

    Google Scholar 

  23. Capriccioli A, Frosi P (2009) Multipurpose ANSYS FE procedure for welding processes simulation. Fusion Eng Des 84:546–553. https://doi.org/10.1016/j.fusengdes.2009.01.039

    Article  Google Scholar 

  24. Lampa C, Kaplan AFH, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. J Phys D Appl Phys 30:1293–1299. https://doi.org/10.1088/0022-3727/30/9/004

    Article  Google Scholar 

  25. Lewis BJ, Onder EN, Prudil AA (2017) Fundamentals of nuclear engineering. Wiley

  26. Griffith ML, Schlienger ME, Harwell LD, Oliver MS, Baldwin MD, Ensz MT, Essien M, Brooks J, Robino CV, Smugeresky JE, Hofmeister WH, Wert MJ, Nelson DV (1999) Understanding thermal behavior in the LENS process. Mater Des 20:107–113. https://doi.org/10.1016/S0261-3069(99)00016-3

    Article  Google Scholar 

  27. Zhang Y, Yu G, He X (2012) Numerical study of thermal history in laser aided direct metal deposition process. Sci China Phys Mech Astron 55:1431–1438. https://doi.org/10.1007/s11433-012-4793-7

    Article  Google Scholar 

  28. Gouge MF, Michaleris P, Palmer TA (2016) Fixturing effects in the thermal modeling of laser cladding. J Manuf Sci Eng 139:011001–011001–10. doi: https://doi.org/10.1115/1.4034136

  29. Selcuk C (2011) Laser metal deposition for powder metallurgy parts. Powder Metall 54:94–99. https://doi.org/10.1179/174329011X12977874589924

    Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the inputs from Dr. F. Sciammarella, Department of Mechanical Engineering, Northern Illinois University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Salehinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochmann, E.A., Salehinia, I. How convection on the substrate affects the thermal history of the build in direct laser deposition—finite element analysis. Int J Adv Manuf Technol 96, 3471–3480 (2018). https://doi.org/10.1007/s00170-018-1696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1696-4

Keywords

Navigation