Skip to main content

Advertisement

Log in

Fuzzy regression integrated with genetic-tabu algorithm for prediction and optimization of a turning process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Prediction of surface roughness is a key element for an automated machining center. In this regard, it is important to optimize the machining process. In this paper, fuzzy linear regression approach is employed to predict the surface roughness for a turning process in an uncertain condition. The important process parameters such as cutting speed, cutting depth, speed, and tool tip radius are considered as inputs to determine their significance for prediction. To handle uncertainty, fuzzy theory is employed. Thus, fuzzy liner regression is modeled. To optimize the estimated values of prediction errors, a genetic algorithm (GA) is developed. In addition, tabu search is used to facilitate GA for better performance. A numerical example is worked out to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zadeh LA (1965) Fuzzy sets. Information and control,( 8, 338–353 ,339–357). Plenum Press, New York

    Google Scholar 

  2. Tanaka H, Vejuoa S, Asai K (1982) Linear aegression analysis with fuzzy model. IEEE Trans Syst Man Cybern 13:903–907

    Google Scholar 

  3. Arabpour AR, Tata M(2008) Estimating the parameters of a fuzzy linear regression model. Iran J Fuzzy Syst, (to appear)

  4. Vijayarani S, Vinupriya M (2015) An efficient algorithm for facial image classiffication. Int J Signal Process Image Process Pattern Recogn 8(11):121–134. https://doi.org/10.14257/ijsip.2015.8.12.13

    Google Scholar 

  5. Jaganathan P, Karthikeyan T (2014) An evolving approach on efficient web crawler using fuzzy genetic algorithm. Int J Sci Res 3(10):156–169

    Google Scholar 

  6. Shankar B, Mishra P, Dehuri S, Kim E, Wang G-N (2016) Techniques and environments for big data analysis: parallel, cloud, and grid computing. Spring 2(5):22–38

    Google Scholar 

  7. Sumathi S, Kumar LA (2016) Computational intelligence paradigms for optimization problems using MATLAB®/SIMULINK®, vol 37. CRC Press, Boca Raton, pp 3201–3217

    Google Scholar 

  8. Cordón O, Herrera F, Gomide F, Hoffmann F and Magdalena L (2001) Ten years of genetic-fuzzy systems: a current framework and new trends. Proceedings of Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Vancouver, Canada, pp 1241–1246

  9. Park YW, Rhee S (2008) Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int J Adv Manuf Technol 37(9-10):1014–1021. https://doi.org/10.1007/s00170-007-1039-3

    Article  Google Scholar 

  10. Jiao Y, Lei S, Pei ZJ, Lee ES (2004) Fuzzy adaptive networks in machining process modeling: surface roughness prediction for turning operations. Int J Mach Tools Manuf 47:375–386

    Google Scholar 

  11. Cococcioni M, Lazzerini B, Marcelloni F (2011) On reducing computational overhead in multi-objective genetic Takagi-Sugeno fuzzy systems. Appl Soft Comput 11(1):675–688. https://doi.org/10.1016/j.asoc.2009.12.028

    Article  Google Scholar 

  12. Bastian A (2000) Identifying fuzzy models utilizing genetic programming. Fuzzy Sets Syst 113(3):333–350. https://doi.org/10.1016/S0165-0114(98)00086-4

    Article  MATH  Google Scholar 

  13. Glover F, Laguna M (2013) Tabu search. Handbook of Combinatorial Optimization. pp 3261–3362. https://doi.org/10.1007/978-1-4419-7997-1_17

  14. Asilturk I, Cunkas M (2011) Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst Appl 38(5):5826–5832. https://doi.org/10.1016/j.eswa.2010.11.041

    Article  Google Scholar 

  15. Hessainia Z, Belbah A, Yallese MA (2013) On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46:1671–1681

    Article  Google Scholar 

  16. Chauhan P, Pant M, Deep K (2015) Parameter optimization of multi-pass turning using chaotic PSO. Int J Mach Learn Cybern 6(2):319–337

    Article  Google Scholar 

  17. Nataraj M, Balasubramanian K (2016) Parametric optimization of CNC turning process for hybrid metal matrix composite. Int J Adv Manuf Technol 1–10

  18. Yildiz AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inf Sci 210(22):81–88. https://doi.org/10.1016/j.ins.2012.03.005

    Article  Google Scholar 

  19. Zain AM, Haron H, Sharif S (2010) Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst Appl 37(6):4650–4659. https://doi.org/10.1016/j.eswa.2009.12.043

    Article  Google Scholar 

  20. Rajasekaran T, Palanikumar K, Vinayagam BK (2011) Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool. Prod Eng 5(2):191–199. https://doi.org/10.1007/s11740-011-0297-y

    Article  Google Scholar 

  21. Kolahan F, Khajavi A (2010) A statistical approach for predicting and optimizing depth of cut in A W J machining for 6063-T6 Al alloy. Int J Mech Syst Sci Eng 2(2):143–146

    Google Scholar 

  22. Hu P, Zhang M, Jin M, Yao B (2014) A support vector machine with the tabu search algorithm for freeway incident detection. Int J Appl Math Comput Sci 2014–06-26. https://doi.org/10.2478/amcs-2014-0030

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikbakhsh Javadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, H., Javadian, N. & Fazlollahtabar, H. Fuzzy regression integrated with genetic-tabu algorithm for prediction and optimization of a turning process. Int J Adv Manuf Technol 96, 2781–2790 (2018). https://doi.org/10.1007/s00170-018-1655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1655-0

Keywords

Navigation