Skip to main content
Log in

Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Opportunities for new applications of lightweight Mg alloys are emerging in bio-medical fields, especially in medical devices and implants. The biodegradable Mg-based alloys wield advantages over their counterparts of SS 316 L, Co-Cr, and Ti-based alloys due to good biocompatibility observed during in-vivo and in-vitro assessments. However, in such aqueous environments, biodegradable magnesium alloys experience the limitation of higher corrosion rates, which causes loosening of the fixation implant. More importantly, it causes an undesirable chemical imbalance in the human body. This undesirable side effect of the promising Mg alloys can be subdued by improving the quality of the implant’s surface which interacts with the human biology. One way to do it is by imparting compressive stress via mechanical processing such as tool-based machining process. Mechanical micro-machining, especially the ultra-precision turning, could be a viable method to fabricate Mg alloy implants and components with the high surface finish necessary for superior corrosion resistance. However, the cutting mechanics of Mg alloy is poorly understood due to the scarcity of processing data and cutting parameters at ultra-precision level. In this paper, with ultra-precise cutting of Mg alloy (AZ91D), a novel “burnishing-like” surface finishing phenomena has been established. Additionally, some of the critical machining results are identified that are crucial for the comprehension of the cutting mechanics. These entities are cutting edge radius effect on the chip formation, material flow angle, machining-induced stress, surface burn marks, chip-tool contact surface, and the fallacy of “no chip formation” phenomenon. Therefore, knowledge derived from this study will enhance the understanding of cutting mechanics at ultra-precision level, and consequently improve the machining results of Mg alloy for bio-medical, electro-mechanical, and space-telecommunication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gwynne B, Lyon P (2007) Magnesium alloys in aerospace applications, past concerns, currents solutions. Proc Fifth triennial international aircraft fire & cabin safety research conference, Atlantic City, pp 1–59

  2. Easton M, Beer A, Barnett M, Davies C, Dunlop G, Durandet Y, Blacket S, Hilditch T, Beggs P (2008) Magnesium alloy applications in automotive structures. J Miner Met Mater Soc 60(11):57–62. https://doi.org/10.1007/s11837-008-0150-8

    Article  Google Scholar 

  3. Mordike BL, Ebert T (2001) Magnesium: properties—applications—potential. Mater Sci Eng A 302(1):37–45. https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  4. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6(5):1680–1692. https://doi.org/10.1016/j.actbio.2010.02.028

    Article  Google Scholar 

  5. Staiger MP, Pietak AM, Huadmai J, Dia G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  Google Scholar 

  6. Henderson SE, Verdelis K, Maiti S, Pal S, Chung WL, Chou DT, Kumta PN, Almarza AJ (2014) Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater 10(5):2323–2332. https://doi.org/10.1016/j.actbio.2013.12.040

    Article  Google Scholar 

  7. Ding W (2016) Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen Biomater 3(2):79–86. https://doi.org/10.1093/rb/rbw003

    Article  Google Scholar 

  8. Xin Y, Liu C, Zhang X, Tang G, Tian X, Chu PK (2007) Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J Mater Res 22(7):2004–2011. https://doi.org/10.1557/jmr.2007.0233

    Article  Google Scholar 

  9. Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, Cohen RC, Westendorf JJ, Lewallen DG, Wijnen AJ (2015) Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng B Rev 21(2):218–230. https://doi.org/10.1089/ten.teb.2014.0333

    Article  Google Scholar 

  10. Singh IB, Singh M, Das S (2015) A comparative corrosion behaviour of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. J Magnes Alloys 3(2):142–148. https://doi.org/10.1016/j.jma.2015.02.004

    Article  Google Scholar 

  11. Pu Z, Outeiro JC, Batista AC, Dillon OW Jr, Puleo DA, Jawahir IS (2012) Enhanced surface integrity of AZ31BMg alloy by cryogenic machining towards improved functional performance of machined components. Int J Mach Tools Manuf 56:17–27. https://doi.org/10.1016/j.ijmachtools.2011.12.006

    Article  Google Scholar 

  12. Uddin MS, Hall C, Murphy P (2015) Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Sci Technol Adv Mater 16(5):053501

    Article  Google Scholar 

  13. Uddin MS, Rosman H, Hall C, Murphy P (2017) Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness. Int J Adv Manuf Technol 90(5–8):2095–2108. https://doi.org/10.1007/s00170-016-9536-x

    Article  Google Scholar 

  14. Outeiro J, Rossi F, Fromentin G, Poulachon G, Germain G, Batista AC (2013) Process mechanics and surface integrity induced by dry and cryogenic machining of AZ31B–O magnesium alloy. Procedia CIRP 8:487–492. https://doi.org/10.1016/j.procir.2013.06.138

    Article  Google Scholar 

  15. Liu Y, Cai S, Dai L (2016) A new method for grain refinement in magnesium alloy: high speed extrusion machining. Mater Sci Eng A 651(10):878–885

    Article  Google Scholar 

  16. Rahman MA, Amrun MR, Rahman M, Kumar AS (2017) Investigation of the critical cutting edge radius based on material hardness. Int J Adv Manuf Technol 88(9–12):3295–3306. https://doi.org/10.1007/s00170-016-9031-4

    Article  Google Scholar 

  17. Salahshoor M, Guo YB (2011) Cutting mechanics in high speed dry machining of biomedical magnesium–calcium alloy using internal state variable plasticity model. Int J Mach Tools Manuf 51(7-8):579–590. https://doi.org/10.1016/j.ijmachtools.2011.04.004

    Article  Google Scholar 

  18. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9-10):851–865. https://doi.org/10.1007/s00170-007-1279-2

    Article  Google Scholar 

  19. Brinksmeier E, Preuss W (2012) Micro-machining. Phil Trans R Soc A 370(1973):3973–3992. https://doi.org/10.1098/rsta.2011.0056

    Article  Google Scholar 

  20. Huo D, Cheng K (2013) Micro cutting mechanics. In: Cheng K, Huo D (eds) Micro-cutting: fundamentals and applications, vol 1. Wiley, Chichester, pp 19–42

    Chapter  Google Scholar 

  21. Prasad VJ, Mohanarao N, Kamaluddin S, Bhattacharya SS (2017) Development of superplasticity in an Al–Mg alloy through severe plastic deformation. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-1060-0

  22. Chen B, Zhang G, Zhang L, Xu T (2017) A new approach of a gradient nanograined surface layer for Mg-3Al-1Zn alloy induced by SMRGT. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-0977-7

  23. Subbiah S, Melkote SN (2008) Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3. Mater Sci Eng A 474(1-2):283–300. https://doi.org/10.1016/j.msea.2007.04.116

    Article  Google Scholar 

  24. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann Manuf Technol 63(2):631–653. https://doi.org/10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  25. Outeiro JC, Astakhov VP (2005) The role of the relative tool sharpness in modelling of the cutting process. Proc 8th CIRP Intl Workshop on Modelling of Machining Operations, pp 517–524

  26. Yen YC, Sartkulvanich P, Altan T (2005) Finite element modeling of roller burnishing process. CIRP Ann Manuf Technol 54(1):237–240

    Article  Google Scholar 

  27. Denkena B, Lucas A (2007) Biocompatible magnesium alloys as absorbable implant materials—adjusted surface and subsurface properties by machining processes. CIRP Ann Manuf Technol 56(1):113–116. https://doi.org/10.1016/j.cirp.2007.05.029

    Article  Google Scholar 

  28. Pu Z, Song GL, Yang S, Outeiro JC, Dillon OW Jr, Puleo DA, Jawahir IS (2012) Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corros Sci 57:192–201. https://doi.org/10.1016/j.corsci.2011.12.018

    Article  Google Scholar 

  29. Salahshoor M, Guo YB (2014) Biodegradation control of magnesium-calcium biomaterial via adjusting surface integrity by synergistic cutting-burnishing. Procedia CIRP 13:143–149. https://doi.org/10.1016/j.procir.2014.04.025

    Article  Google Scholar 

  30. Li FL, Xia W, Zhou ZY, Zhao J, Tang ZQ (2012) Analytical prediction and experimental verification of surface roughness during the burnishing process. Int J Mach Tools Manuf 62:67–75

    Article  Google Scholar 

  31. He CL, Zong WJ, Sun T (2016) Origins for the size effect of surface roughness in diamond turning. Int J Mach Tools Manuf 106:22–42. https://doi.org/10.1016/j.ijmachtools.2016.04.004

    Article  Google Scholar 

  32. Woon KS, Rahman M (2010) Extrusion-like chip formation mechanism and its role in suppressing void nucleation. CIRP Ann Manuf Technol 59(1):129–132. https://doi.org/10.1016/j.cirp.2010.03.094

    Article  Google Scholar 

  33. Lee WB, Cheung CF, To S (2002) A microplasticity analysis of micro-cutting force variation in ultra-precision diamond turning. J Manuf Sci Eng 124(2):170–177. https://doi.org/10.1115/1.1454108

    Article  Google Scholar 

  34. Shimada S, lkawa N, Tanaka H, Ohrnori G, Uchikoshi J (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. Annals ClRP 42(1):91–94. https://doi.org/10.1016/S0007-8506(07)62399-3

    Article  Google Scholar 

  35. Arcona C, Dow TA (1998) An empirical tool force model for precision machining. ASME J Manuf Sci Eng 120(4):700–707. https://doi.org/10.1115/1.2830209

    Article  Google Scholar 

  36. Oliaeia SNB, Karpat Y (2016) Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloyTi6Al4V. J Mater Process Technol 235:28–40. https://doi.org/10.1016/j.jmatprotec.2016.04.010

    Article  Google Scholar 

  37. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3:6–9

    Article  Google Scholar 

  38. Yen YC, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater ProcessTechnol 146:72–81

    Article  Google Scholar 

  39. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45(15):1681–1686. https://doi.org/10.1016/j.ijmachtools.2005.03.010

    Article  Google Scholar 

  40. Fang F, Xu F, Lai M (2015) Size effect in material removal by cutting at nano scale. Int J Adv Manuf Technol 80(1-4):591–598. https://doi.org/10.1007/s00170-015-7032-3

    Article  Google Scholar 

  41. Komanduri R, Chandrasekaran N, Raff LM (1998) Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219(1):84–97

    Article  Google Scholar 

  42. Childs THC, Dornfeld D, Lee DE, Min S, Sekiya K, Tezuka R, Yamane Y (2008) The influence of cutting edge sharpness on surface finish in facing with round nosed cutting tools. CIRP J Manuf Sci Technol 1:70–75

    Article  Google Scholar 

  43. Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55(2):667–696. https://doi.org/10.1016/j.cirp.2006.10.003

    Article  Google Scholar 

  44. Doman DA, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49:109–116

    Article  Google Scholar 

  45. Okuda K, Takeno Y (2004) Ultra-precision cutting of magnesium alloys using a single crystal diamond tool. J Jpn Inst Light Met 54(11):538–543. https://doi.org/10.2464/jilm.54.538

    Article  Google Scholar 

  46. Arai M, Sato S, Ogawa M, Shikata H (1996) Chip control in finish cutting of magnesium alloy. J Mater Process Technol 62(4):341–344. https://doi.org/10.1016/S0924-0136(96)02432-6

    Article  Google Scholar 

  47. Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14

    Article  Google Scholar 

  48. Zhang X, Arif M, Liu K, Kumar AS, Rahman M (2013) A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials. Int J Mach Tools Manuf 69:57–66. https://doi.org/10.1016/j.ijmachtools.2013.03.006

    Article  Google Scholar 

  49. Rahman MA, Amrun MR, Rahman M, Kumar AS (2017) Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties. Int J Mach Tools Manuf 115:15–28. https://doi.org/10.1016/j.ijmachtools.2016.11.003

    Article  Google Scholar 

  50. Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62(4):327–330. https://doi.org/10.1016/S0924-0136(96)02429-6

    Article  Google Scholar 

  51. Pu Z, Outeiro JC, Batista AC, Dillon OW Jr, Puleo DA, Jawahir IS (2011) Surface integrity in dry and cryogenic machining of AZ31B mg alloy with varying cutting edge radius tools. Procedia Eng 19:282–287. https://doi.org/10.1016/j.proeng.2011.11.113

    Article  Google Scholar 

  52. Wu J, Liu Z (2010) Modeling of flow stress in orthogonal micro-cutting process based on strain gradient plasticity theory. Int J Adv Manuf Technol 46(1-4):143–149. https://doi.org/10.1007/s00170-009-2049-0

    Article  Google Scholar 

  53. Hassan M, Bsharat ASA (1996) Improvements in some properties of non-ferrous metals by the application of the ball-burnishing process. J Mater Process Technol 59(3):250–256. https://doi.org/10.1016/0924-0136(95)02149-3

    Article  Google Scholar 

  54. Guo YB, Salahshoor M (2010) Process mechanics and surface integrity by high-speed dry milling of biodegradable magnesium–calcium implant alloys. CIRP Ann Manuf Technol 59:51–154

    Article  Google Scholar 

  55. Zayan MH, Jamjoom OM, Razik NA (1990) High-temperature oxidation of Al-Mg alloys. Oxid Met 34(3/4):323–333. https://doi.org/10.1007/BF00665021

    Article  Google Scholar 

  56. Arif M, Rahman M, San WY, Kumar AS (2014) An empirical study on the characterization of machined surface integrity by chip morphology in dry end-milling of titanium alloy. J Eng Manuf 228(3):471–476. https://doi.org/10.1177/0954405413501671

    Article  Google Scholar 

  57. Fang FZ, Lee LC, Liu XD (2005) Mean flank temperature measurement in high speed dry cutting of magnesium alloy. J Mater Process Technol 167(1):119–123. https://doi.org/10.1016/j.jmatprotec.2004.10.002

    Article  Google Scholar 

  58. Mabuchi M, Iwasaki H, Yanase K, Higashi K (1997) Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scr Mater 36(6):681–686. https://doi.org/10.1016/S1359-6462(96)00444-7

    Article  Google Scholar 

  59. Czerwinski F (2002) The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Mater 50(10):2639–2654. https://doi.org/10.1016/S1359-6454(02)00094-0

    Article  Google Scholar 

  60. Sun HQ, Shi YN, Zhang MX (2008) Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer. Surf Coat Technol 202(13):2859–2864. https://doi.org/10.1016/j.surfcoat.2007.10.025

    Article  Google Scholar 

  61. Hassan AM (1997) An investigation into the surface characteristics of burnished cast al-cu alloys. Int J Mach Tools Manuf 37(6):813–821. https://doi.org/10.1016/S0890-6955(96)00058-2

    Article  Google Scholar 

Download references

Funding

The work described in this paper was supported by A*Star Singapore (grant no: R265-000-534-305) and Singapore Institute of Manufacturing Technology (SIMTech) (grant no: R265-000-518-504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azizur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizur Rahman, M., Rahman, M. & Senthil Kumar, A. Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy. Int J Adv Manuf Technol 96, 3545–3563 (2018). https://doi.org/10.1007/s00170-018-1599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1599-4

Keywords

Navigation