Advertisement

Influence of pulse waveform on machining accuracy in electrochemical machining

  • Wei Chen
  • Fuzhu Han
  • Junhua Wang
ORIGINAL ARTICLE
  • 132 Downloads

Abstract

Low machining accuracy has been a technical bottleneck for the application and promotion of electrochemical machining (ECM). Since the 1990s, it has been recognized by scholars that high-frequency pulsed power supply can improve the precision of ECM. But, in terms of the experimental results of our study, a new discovery was found that the increasing of the frequency has no effect on improving the machining accuracy of ECM. Comparing with the DC power supply, the experiment results show that the machining accuracy under pulsed power supply is decided by effective average voltage value, regardless of the frequency of the pulsed waveform, the duty cycle, and the pulse peak.

Keywords

Electrochemical machining (ECM) Machining accuracy Pulsed power supply Pulse waveform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the China National Natural Science Foundation (51575308) for the support of this study.

References

  1. 1.
    Fang X, Qu N, Li H, Zhu D (2013) Enhancement of insulation coating durability in electrochemical drilling. Int J Adv Manuf Technol 68(9–12):2005–2013.  https://doi.org/10.1007/s00170-013-4803-6 CrossRefGoogle Scholar
  2. 2.
    Rajurkar KP, Zhu D, McGeough JA, Kozak J, Silva AD (1999) New developments in electro-chemical machining. CIRP Ann Manuf Technol 48(2):567–579.  https://doi.org/10.1016/S0007-8506(07)63235-1 CrossRefGoogle Scholar
  3. 3.
    Liu Z, Liu Y, Qiu ZJ, Qu NS (2009) Effect of tool electrode insulation on electrochemical micro drilling accuracy. Nanotechnol Precis Eng 7(4):355–360Google Scholar
  4. 4.
    Li Y, Zheng YF, Yang G, Peng LQ (2003) Localized electrochemical micromachining with gap control. Sens Actuators A 108(1–3):144–148Google Scholar
  5. 5.
    Park BJ, Kim BH, Chu CN (2006) The effects of tool electrode size on characteristics of micro electrochemical machining. CIRP Ann Manuf Technol 55(1):197–200.  https://doi.org/10.1016/S0007-8506(07)60397-7 CrossRefGoogle Scholar
  6. 6.
    Park MS, Chu CN (2007) Micro-electrochemical machining using multiple tool electrodes. J Micromech Microeng 17(8):1451–1457.  https://doi.org/10.1088/0960-1317/17/8/006 CrossRefGoogle Scholar
  7. 7.
    Hung J, Liu H, Chang Y, Hung K, Liu S (2013) Development of helical electrode insulation layer for electrochemical microdrilling. Procedia CIRP 6:373–377.  https://doi.org/10.1016/j.procir.2013.03.045 CrossRefGoogle Scholar
  8. 8.
    Liu GH, Li Y, Chen XP, Lv SJ (2009) Research on side-insulation of tool electrode for micro electrochemical machining. Adv Mater Res 60–61:380–387CrossRefGoogle Scholar
  9. 9.
    Brusilovski A (2010) Dielectric coating of cathodes for microfabrication using electrochemical method. J Manuf Sci Eng 132(6):064505.  https://doi.org/10.1115/1.4003123 CrossRefGoogle Scholar
  10. 10.
    Shin HS, Kim BH, Chu CN (2008) Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses. J Micromech Microeng 18(7):075009.  https://doi.org/10.1088/0960-1317/18/7/075009 CrossRefGoogle Scholar
  11. 11.
    Liu Y, Zeng YB (2014) Electrochemical drilling of deep and small holes with high speed micro electrode. Opt Precis Eng 22(3):608–615MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kirchner V, Cagnon L, Schuster R, Ertl G (2001) Electrochemical machining of stainless steel microelements with ultrashort voltage pulses. Appl Phys Lett 79(11):1721–1723.  https://doi.org/10.1063/1.1401783 CrossRefGoogle Scholar
  13. 13.
    Trimmer AL, Hudson JL, Kock M, Schuster R (2003) Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Appl Phys Lett 82(19):3327–3329.  https://doi.org/10.1063/1.1576499 CrossRefGoogle Scholar
  14. 14.
    Kock M, Kirchner V, Schuster R (2003) Electrochemical micromachining with ultrashort voltage pulses—a versatile method with lithographical precision. Electrochim Acta 48(20–22):3213–3219CrossRefGoogle Scholar
  15. 15.
    Kirchner V, Xia X, Schuster R (2001) Electrochemical nanostructuring with ultrashort voltage pulses. Accounts Chem Res 34(5):371–377.  https://doi.org/10.1021/ar000133p CrossRefGoogle Scholar
  16. 16.
    Skoczypiec S (2016) Discussion of ultrashort voltage pulses electrochemical micromachining: a review. Int J Adv Manuf Technol 87(1–4):177–187.  https://doi.org/10.1007/s00170-016-8392-z CrossRefGoogle Scholar
  17. 17.
    Das AK, Saha P (2015) Experimental investigation on micro-electrochemical sinking operation for fabrication of micro-holes. J Braz Soc Mech Sci Eng 37(2):657–663.  https://doi.org/10.1007/s40430-014-0194-3 CrossRefGoogle Scholar
  18. 18.
    Bhattacharyya B, Munda J (2003) Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int J Mach Tools Manuf 43(13):1301–1310.  https://doi.org/10.1016/S0890-6955(03)00161-5 CrossRefGoogle Scholar
  19. 19.
    Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289(5476):98–101.  https://doi.org/10.1126/science.289.5476.98 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and ControlTsinghua UniversityBeijingChina

Personalised recommendations