Skip to main content

Advertisement

Log in

Electric discharge machining of titanium and its alloys: review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electric discharge machining (EDM) is one of the leading edge machining processes successfully used to machine hard-to-cut materials in wide range of industrial applications. It is a non-conventional material removal process that can machine a complex shapes and geometries with high accuracy. The principle of the EDM technique is to use thermoelectric energy to erode conductive components by rapidly recurring sparks between the non-contacted electrode and workpiece. To improve EDM performance, the machine’s operating parameters need to be optimized. Studies related to the EDM have shown that the appropriate selection of the process, material, and operating parameters had considerably improved the process performance. This paper made a comprehensive review about the research studies on the EDM of different grades of titanium and its alloys. This review presents the experimental and theoretical studies on EDM that aimed to improve the process performance, including material removal rate, surface quality, and tool wear rate, among others. This paper also examines evaluation models and techniques used to determine the EDM process conditions. Moreover, the paper discusses the recent developments in EDM and outlines the progression for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benes J Cutting Difficult-to-Machine Materials. <http://www.americanmachinist.com/304/Issue/Article/False/44740/Issue>, Jan 24, 2007. (last accessed on March 6,2016)

  2. Komanduri R, Hou Z-B (2002) On thermoplastic shear instability in the machining of a titanium alloy (Ti-6Al-4V). Metall Mater Trans A 33(9):2995–3010. https://doi.org/10.1007/s11661-002-0284-1

    Article  Google Scholar 

  3. Pérez J, Llorente J, Sanchez J (2000) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100(1):1–11

    Google Scholar 

  4. Hewidy M, El-Taweel T, El-Safty M (2005) Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. J Mater Process Technol 169(2):328–336. https://doi.org/10.1016/j.jmatprotec.2005.04.078

    Article  Google Scholar 

  5. Yu Z, Jun T, Masanori K (2004) Dry electrical discharge machining of cemented carbide. J Mater Process Technol 149(1–3):353–357. https://doi.org/10.1016/j.jmatprotec.2003.10.044

    Article  Google Scholar 

  6. Chiang K-T, Chang F-P (2006) Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J Mater Process Technol 180(1–3):96–101. https://doi.org/10.1016/j.jmatprotec.2006.05.008

    Article  Google Scholar 

  7. Lee S, Li X (2001) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J Mater Process Technol 115(3):344–358. https://doi.org/10.1016/S0924-0136(01)00992-X

    Article  Google Scholar 

  8. Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44(12–13):1247–1259. https://doi.org/10.1016/j.ijmachtools.2004.04.017

    Article  Google Scholar 

  9. Mohd Abbas N, Solomon DG, Fuad Bahari M (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228. https://doi.org/10.1016/j.ijmachtools.2006.08.026

    Article  Google Scholar 

  10. Singh S, Maheshwari S, Pandey P (2004) Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J Mater Process Technol 149(1):272–277. https://doi.org/10.1016/j.jmatprotec.2003.11.046

    Article  Google Scholar 

  11. Tzeng Y-f, Chen F-c (2003) A simple approach for robust design of high-speed electrical-discharge machining technology. Int J Mach Tools Manuf 43(3):217–227. https://doi.org/10.1016/S0890-6955(02)00261-4

    Article  Google Scholar 

  12. Hsieh M-F, Tung CJ, Yao WS, Wu MC, Liao YS (2007) Servo design of a vertical axis drive using dual linear motors for high speed electric discharge machining. Int J Mach Tools Manuf 47(3–4):546–554. https://doi.org/10.1016/j.ijmachtools.2006.05.011

    Article  Google Scholar 

  13. Lim HS, Wong YS, Rahman M, Edwin Lee MK (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Technol 140(1–3):318–325. https://doi.org/10.1016/S0924-0136(03)00760-X

    Article  Google Scholar 

  14. Yan BH, Huang FY, Chow HM, Tsai JY (1999) Micro-hole machining of carbide by electric discharge machining. J Mater Process Technol 87(1–3):139–145. https://doi.org/10.1016/S0924-0136(98)00345-8

    Article  Google Scholar 

  15. McCown B et al (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9(10):590–594. https://doi.org/10.1007/BF00232339

    Article  Google Scholar 

  16. Kansal HK, Singh S, Kumar P (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184(1–3):32–41. https://doi.org/10.1016/j.jmatprotec.2006.10.046

    Article  Google Scholar 

  17. Gostimirovic M et al (2012) Effect of electrical pulse parameters on the machining performance in EDM. Indian J Eng Mater Sci 18:411–415

    Google Scholar 

  18. Gao C, Liu Z (2003) A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J Mater Process Technol 139(1):226–228. https://doi.org/10.1016/S0924-0136(03)00224-3

    Article  Google Scholar 

  19. Dauw DF, Snoeys R, Dekeyser W (1983) Advanced pulse discriminating system for EDM process analysis and control. CIRP Ann Manuf Technol 32(2):541–549. https://doi.org/10.1016/S0007-8506(07)60181-4

    Article  Google Scholar 

  20. Marafona J, Chousal J (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46(6):595–602. https://doi.org/10.1016/j.ijmachtools.2005.07.017

    Article  Google Scholar 

  21. Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7

    Article  Google Scholar 

  22. Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7):1214–1228. https://doi.org/10.1016/j.ijmachtools.2006.08.026

    Article  Google Scholar 

  23. Cui J, Chu Z (2016) Composite motion design procedure for vibration assisted small-hole EDM using one voice coil motor. Shock Vib 2016:7

    Google Scholar 

  24. Bing S, Masayuki S, Clements JS (1999) Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution. J Phys D Appl Phys 32(15):1908

    Article  Google Scholar 

  25. Anpilov AM, Barkhudarov EM, Bark YB, Zadiraka YV, Christofi M, Kozlov YN, Kossyi IA, Kop'ev VA, Silakov VP, Taktakishvili MI, Temchin SM (2001) Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J Phys D Appl Phys 34(6):993–999. https://doi.org/10.1088/0022-3727/34/6/322

    Article  Google Scholar 

  26. Ikonomou MG, Blades AT, Kebarle P (1991) Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas. J Am Soc Mass Spectrom 2(6):497–505. https://doi.org/10.1016/1044-0305(91)80038-9

    Article  Google Scholar 

  27. Grigoryev EG, Olevsky EA (2012) Thermal processes during high-voltage electric discharge consolidation of powder materials. Scr Mater 66(9):662–665. https://doi.org/10.1016/j.scriptamat.2012.01.035

    Article  Google Scholar 

  28. Lajis MA, Radzi H, Amin A (2009) The implementation of Taguchi method on EDM process of tungsten carbide. Eur J Sci Res 26(4):609–617

    Google Scholar 

  29. Singh H, Garg R (2009) Effects of process parameters on material removal rate in WEDM. J Achiev Mater Manuf Eng 32(1):70–74

    Google Scholar 

  30. Lin et al (2000) Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM. J Mater Process Technol 104(3):171–177

    Article  MathSciNet  Google Scholar 

  31. Liu Y, Guo Y, Liu J (1997) Electric discharge milling of polycrystalline diamond. Proc Inst Mech Eng B J Eng Manuf 211(8):643–647. https://doi.org/10.1243/0954405981516580

    Article  Google Scholar 

  32. Kuppan P, Rajadurai A, Narayanan S (2008) Influence of EDM process parameters in deep hole drilling of Inconel 718. Int J Adv Manuf Technol 38(1–2):74–84. https://doi.org/10.1007/s00170-007-1084-y

    Article  Google Scholar 

  33. Bhattacharyya B, Munda J (2003) Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int J Mach Tools Manuf 43(13):1301–1310. https://doi.org/10.1016/S0890-6955(03)00161-5

    Article  Google Scholar 

  34. Lin J et al (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Technol 102(1):48–55. https://doi.org/10.1016/S0924-0136(00)00438-6

    Article  Google Scholar 

  35. Ramakrishnan R, Karunamoorthy L (2008) Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. J Mater Process Technol 207(1–3):343–349. https://doi.org/10.1016/j.jmatprotec.2008.06.040

    Article  Google Scholar 

  36. Lin C, Lin J, Ko T (2002) Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int J Adv Manuf Technol 19(4):271–277. https://doi.org/10.1007/s001700200034

    Article  Google Scholar 

  37. Kansal H, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169(3):427–436. https://doi.org/10.1016/j.jmatprotec.2005.03.028

    Article  Google Scholar 

  38. Kumar S, Singh R, Singh TP, Sethi BL (2009) Surface modification by electrical discharge machining: a review. J Mater Process Technol 209(8):3675–3687. https://doi.org/10.1016/j.jmatprotec.2008.09.032

    Article  Google Scholar 

  39. Jahan M, Rahman M, Wong Y (2011) A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int J Mach Tools Manuf 51(12):837–858. https://doi.org/10.1016/j.ijmachtools.2011.08.016

    Article  Google Scholar 

  40. Rajurkar KP, Wang WM (1997) Improvement of EDM performance with advanced monitoring and control systems. J Manuf Sci Eng 119(4B):770–775. https://doi.org/10.1115/1.2836823

    Article  Google Scholar 

  41. Mohan B, Rajadurai A, Satyanarayana K (2002) Effect of SiC and rotation of electrode on electric discharge machining of Al–SiC composite. J Mater Process Technol 124(3):297–304. https://doi.org/10.1016/S0924-0136(02)00202-9

    Article  Google Scholar 

  42. Mohan B, Rajadurai A, Satyanarayana K (2004) Electric discharge machining of al–SiC metal matrix composites using rotary tube electrode. J Mater Process Technol 153:978–985

    Article  Google Scholar 

  43. Szafarczyk M (2012) Automatic supervision in manufacturing. Springer Science & Business Media, Berlin

    Google Scholar 

  44. Dimov S, Menz W (2005) 4M 2005-First International Conference on Multi-Material Micro Manufacture. Elsevier, Amsterdam

    Google Scholar 

  45. Tsai Y, Tseng C, Chang C (2008) Development of a combined machining method using electrorheological fluids for EDM. J Mater Process Technol 201(1):565–569. https://doi.org/10.1016/j.jmatprotec.2007.11.150

    Article  Google Scholar 

  46. Valaki JB, Rathod PP (2015) Assessment of operational feasibility of waste vegetable oil based biodielectric fluid for sustainable electric discharge machining (EDM). Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-015-7169-0

  47. Shen Y, Liu Y, Zhang Y, Dong H, Sun W, Wang X, Zheng C, Ji R (2015) High-speed dry electrical discharge machining. Int J Mach Tools Manuf 93:19–25. https://doi.org/10.1016/j.ijmachtools.2015.03.004

    Article  Google Scholar 

  48. Fujiki M, Ni J, Shih AJ (2009) Investigation of the effects of electrode orientation and fluid flow rate in near-dry EDM milling. Int J Mach Tools Manuf 49(10):749–758. https://doi.org/10.1016/j.ijmachtools.2009.05.003

    Article  Google Scholar 

  49. Lonardo P, Bruzzone A (1999) Effect of flushing and electrode material on die sinking EDM. CIRP Ann-Manuf Technol 48(1):123–126. https://doi.org/10.1016/S0007-8506(07)63146-1

    Article  Google Scholar 

  50. Wong Y, Lim L, Lee L (1995) Effects of flushing on electro-discharge machined surfaces. J Mater Process Technol 48(1):299–305. https://doi.org/10.1016/0924-0136(94)01662-K

    Article  Google Scholar 

  51. Anonymous (1982) Dielectric fluids for electro dischargemachining. British Petroleum Company, UK

    Google Scholar 

  52. Guu Y, Hocheng H (2001) Effects of workpiece rotation on machinability during electrical-discharge machining. Mater Manuf Process 16(1):91–101. https://doi.org/10.1081/AMP-100103699

    Article  Google Scholar 

  53. Soni J, Chakraverti G (1994) Machining characteristics of titanium with rotary electro-discharge machining. Wear 171(1):51–58. https://doi.org/10.1016/0043-1648(94)90347-6

    Article  Google Scholar 

  54. Yan B et al (2000) Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode. Int J Adv Manuf Technol 16(5):322–333. https://doi.org/10.1007/s001700050164

    Article  Google Scholar 

  55. Kagaya K, Ōishi Y, Yada K (1986) Micro-electrodischarge machining using water as a working fluid—I: micro-hole drilling. Precis Eng 8(3):157–162. https://doi.org/10.1016/0141-6359(86)90034-6

    Article  Google Scholar 

  56. Sato T, Mizutani T, Yonemochi K, Kawata K (1986) The development of an electrodischarge machine for micro-hole boring. Precis Eng 8(3):163–168. https://doi.org/10.1016/0141-6359(86)90035-8

    Article  Google Scholar 

  57. Pandit S, Mueller T (1987) Verification of on-line computer control of EDM by data dependent systems. J Eng Ind 109(2):117–121. https://doi.org/10.1115/1.3187100

    Article  Google Scholar 

  58. Su J, Kao J, Tarng Y (2004) Optimisation of the electrical discharge machining process using a GA-based neural network. Int J Adv Manuf Technol 24(1–2):81–90

    Google Scholar 

  59. Marafona J, Wykes C (2000) A new method of optimising material removal rate using EDM with copper–tungsten electrodes. Int J Mach Tools Manuf 40(2):153–164. https://doi.org/10.1016/S0890-6955(99)00062-0

    Article  Google Scholar 

  60. Soni J, Chakraverti G (1996) Experimental investigation on migration of material during EDM of die steel (T215 Cr12). J Mater Process Technol 56(1):439–451. https://doi.org/10.1016/0924-0136(95)01858-1

    Article  Google Scholar 

  61. Erden A (1983) Effect of materials on the mechanism of electric discharge machining (EDM). J Eng Mater Technol 105(2):132–138. https://doi.org/10.1115/1.3225627

    Article  Google Scholar 

  62. Kruth J-P, Stevens L, Froyen L, Lauwers B (1995) Study of the white layer of a surface machined by die-sinking electro-discharge machining. CIRP Ann-Manuf Technol 44(1):169–172. https://doi.org/10.1016/S0007-8506(07)62299-9

    Article  Google Scholar 

  63. Saito K, Kishinami T, Konno H, Sato M, Takeyama H (1986) Development of numerical contouring control electric discharge machining (NCC-EDM). CIRP Ann-Manuf Technol 35(1):117–120. https://doi.org/10.1016/S0007-8506(07)61851-4

    Article  Google Scholar 

  64. Kaneko T, Tsuchiya M (1984) Three dimensionally controlled EDM using cylindrical electrode. J Jpn Soc Electr Machining Eng 18(35):1–4

    Article  Google Scholar 

  65. Mohri N, Suzuki M, Furuya M, Saito N, Kobayashi A (1995) Electrode wear process in electrical discharge machinings. CIRP Ann-Manuf Technol 44(1):165–168. https://doi.org/10.1016/S0007-8506(07)62298-7

    Article  Google Scholar 

  66. Staelens F, Kruth J-P (1989) A computer integrated machining strategy for planetary EDM. CIRP Ann-Manuf Technolo 38(1):187–190. https://doi.org/10.1016/S0007-8506(07)62681-X

    Article  Google Scholar 

  67. Schumacher BM (1983) EDM technology for precision work pieces with excellent surface quality. Proceedings of the ISEM–7, 124–135

  68. Grote K-H, Antonsson EK (2009) Springer handbook of mechanical engineering. Vol. 10. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  69. Amorim FL, Weingaertner WL (2007) The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J Braz Soc Mech Sci Eng 29(4):366–371. https://doi.org/10.1590/S1678-58782007000400004

    Article  Google Scholar 

  70. Shabgard M et al (2013) Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes. J Manuf Syst 32(1):32–39. https://doi.org/10.1016/j.jmsy.2012.09.002

    Article  Google Scholar 

  71. Nourbakhsh F (2012) Machining stability of wire EDM of titanium industrial and management systems engineering -- dissertations and student research. http://digitalcommons.unl.edu/imsediss/37

  72. Zhao W, Meng Q, Wang Z (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129(1):30–33. https://doi.org/10.1016/S0924-0136(02)00570-8

    Article  Google Scholar 

  73. Kunieda M, Adachi Y, Yoshida M (2000) Study on process reaction force generated by discharge in EDM. Proc MMSS 2000:313–324

    Google Scholar 

  74. Kunleda M, Miyoshi Y, Takaya T, Nakajima N, ZhanBo Y, Yoshida M (2003) High speed 3D milling by dry EDM. CIRP Ann-Manuf Technol 52(1):147–150. https://doi.org/10.1016/S0007-8506(07)60552-6

    Article  Google Scholar 

  75. Joshi S, Govindan P, Malshe A, Rajurkar K (2011) Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Ann-Manuf Technol 60(1):239–242. https://doi.org/10.1016/j.cirp.2011.03.114

    Article  Google Scholar 

  76. Yu Z et al (2005) Feasibility of 3-D surface machining by dry EDM. Int J Elec Mach 10:15–20

    Google Scholar 

  77. Kunieda M, Takaya T, Nakano S (2004) Improvement of dry EDM characteristics using piezoelectric actuator. CIRP Ann-Manuf Technol 53(1):183–186. https://doi.org/10.1016/S0007-8506(07)60674-X

    Article  Google Scholar 

  78. Anonymous (2000) Titanium: a technical guide. ASM International, 2nd edn (#06112G). http://www.asminternational.org/documents/10192/22833166/06112G_Sample_BuyNow.pdf/b308f407-a947-4714-a241-16181a47a34e. Last accessed on Jan. 14, 2018

  79. Anonymous (2000) Titanium alloy guide. http://www.rtiintl.com/Titanium/RTI-Titanium-Alloy-Guide.pdf. Last accessed on May 16, 2016

  80. Mower TM (2014) Degradation of titanium 6Al–4V fatigue strength due to electrical discharge machining. Int J Fatigue 64:84–96. https://doi.org/10.1016/j.ijfatigue.2014.02.018

    Article  Google Scholar 

  81. Porwal RK, Yadava V, Ramkumar J (2014) Modelling and multi-response optimization of hole sinking electrical discharge micromachining of titanium alloy thin sheet. J Mech Sci Technol 28(2):653–661. https://doi.org/10.1007/s12206-013-1129-0

    Article  Google Scholar 

  82. Stráský J, Havlíková J, Bačáková L, Harcuba P, Mhaede M, Janeček M (2013) Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Appl Surf Sci 281:73–78. https://doi.org/10.1016/j.apsusc.2013.02.053

    Article  Google Scholar 

  83. Klocke F, Zeis M, Klink A, Veselovac D (2012) Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium-and nickel-based blisks. Procedia CIRP 2:98–101. https://doi.org/10.1016/j.procir.2012.05.048

    Article  Google Scholar 

  84. Gu L, Li L, Zhao W, Rajurkar KP (2012) Electrical discharge machining of Ti6Al4V with a bundled electrode. Int J Mach Tools Manuf 53(1):100–106. https://doi.org/10.1016/j.ijmachtools.2011.10.002

    Article  Google Scholar 

  85. Harcuba P, Bačáková L, Stráský J, Bačáková M, Novotná K, Janeček M (2012) Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. J Mech Behav Biomed Mater 7:96–105. https://doi.org/10.1016/j.jmbbm.2011.07.001

    Article  Google Scholar 

  86. Rangajanardhaa G, Rao S (2009) Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. J Mater Process Technol 209(3):1512–1520

    Article  Google Scholar 

  87. Fonda P, Wang Z, Yamazaki K, Akutsu Y (2008) A fundamental study on Ti–6Al–4V's thermal and electrical properties and their relation to EDM productivity. J Mater Process Technol 202(1):583–589. https://doi.org/10.1016/j.jmatprotec.2007.09.060

    Article  Google Scholar 

  88. Hasçalık A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti–6Al–4V). Appl Surf Sci 253(22):9007–9016. https://doi.org/10.1016/j.apsusc.2007.05.031

    Article  Google Scholar 

  89. Wang AC, Yan BH, Li XT, Huang FY (2002) Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. Int J Mach Tools Manuf 42(8):915–923. https://doi.org/10.1016/S0890-6955(02)00025-1

    Article  Google Scholar 

  90. Chen S et al (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4V. J Mater Process Technol 87(1):107–111. https://doi.org/10.1016/S0924-0136(98)00340-9

    Article  MathSciNet  Google Scholar 

  91. Soni J (1994) Microanalysis of debris formed during rotary EDM of titanium alloy (Ti 6A1 4V) and die steel (T 215 Cr12). Wear 177(1):71–79. https://doi.org/10.1016/0043-1648(94)90119-8

    Article  Google Scholar 

  92. Sivakumar K, Gandhinathan R (2013) Establishing optimum process parameters for machining titanium alloys (Ti6Al4V) in spark electric discharge machining. Int J Eng Adv Technol (IJEAT) 2:201–204

    Google Scholar 

  93. Shen Y et al (2014) Determining the energy distribution during electric discharge machining of Ti–6Al–4V. Int J Adv Manuf Technol 70(1–4):11–17

    Google Scholar 

  94. Kumar S, Batish A, Singh R, Singh TP (2014) A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. J Mech Sci Technol 28(7):2831–2844. https://doi.org/10.1007/s12206-014-0637-x

    Article  Google Scholar 

  95. Izman S, et al (2012) Effects of adding multiwalled carbon nanotube into dielectric when EDMing titanium alloy. in Advanced Materials Research. Trans Tech Publ

  96. Santos I, Polli ML, Daniel H (2015) Influence of input parameters on the electrical discharge machining of titanium alloy (TI-6AL-4V). Int J Manuf Res 10(3):286–298. https://doi.org/10.1504/IJMR.2015.071626

    Article  Google Scholar 

  97. Kuttuboina MK et al (2012) Effect of process parameters in electric discharge machining of Ti-6Al–4V alloy by three different tool electrode materials. Adv Mater Res 488-489:876–880

    Article  Google Scholar 

  98. Thesiya et al (2014) Heat affected zone and recast layer of Ti-6Al-4V alloy in the EDM process through scanning electron microscopy (SEM). J Manuf Technol Res 6(1/2):41

    Google Scholar 

  99. Uthirapathi A, Singaravelu DL (2013) Effect of rotating tool electrode on machining of titanium alloy using electric discharge machining. Adv Mater Res 651:448–452

    Article  Google Scholar 

  100. Yadav et al (2015) Experimental investigation on electrical discharge drilling of Ti-6Al-4V alloy. Mach Sci Technol 19(4):515–535

    Article  MathSciNet  Google Scholar 

  101. Klocke F, Welling D, Dieckmann J (2011) Comparison of grinding and Wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components. Procedia Eng 19:184–189. https://doi.org/10.1016/j.proeng.2011.11.099

    Article  Google Scholar 

  102. Aspinwall D et al (2008) Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology. CIRP Ann-Manuf Technol 57(1):187–190. https://doi.org/10.1016/j.cirp.2008.03.054

    Article  Google Scholar 

  103. Nourbakhsh F, Rajurkar KP, Malshe AP, Cao J (2013) Wire electro-discharge machining of titanium alloy. Procedia CIRP 5:13–18. https://doi.org/10.1016/j.procir.2013.01.003

    Article  Google Scholar 

  104. Kuriakose S, Shunmugam M (2004) Characteristics of wire-electro discharge machined Ti6Al4V surface. Mater Lett 58(17):2231–2237. https://doi.org/10.1016/j.matlet.2004.01.037

    Article  Google Scholar 

  105. Alias A, Abdullah B, Abbas NM (2012) WEDM: influence of machine feed rate in machining titanium Ti-6Al-4V using brass wire and constant current (4A). Procedia Eng 41:1812–1817. https://doi.org/10.1016/j.proeng.2012.07.388

    Article  Google Scholar 

  106. Muthu KV, Suresh BA, Suresh BA, Venkatasamy R, Raajenthiren M (2011) Process optimization of wire-EDM parameters by grey relational analysis based Taguchi method, vol 3. BITS, Pilani, pp 1–11

    Google Scholar 

  107. Ali MAM, Izamshah R, Hussein NIS, Kasim MS, Sulaiman MA, Salleh MR, Mohamad E, Subramonian S, Liew PJ, Abdullah Z (2014) Performance of wire-EDM parameters on machining characteristics of titanium alloy (Ti6Al4V) using Taguchi method. In: Malaysia University Conference Engineering Technology 2015, Melaka 10–11 November 2014

  108. Lee H et al (2004) Electrical discharge surface alloying. J Mater Process Technol 149(1):334–340. https://doi.org/10.1016/j.jmatprotec.2003.11.049

    Article  Google Scholar 

  109. Xie B-c et al (2011) Numerical simulation of titanium alloy machining in electric discharge machining process. Trans Nonferrous Metals Soc China 21:s434–s439. https://doi.org/10.1016/S1003-6326(11)61620-8

    Article  Google Scholar 

  110. Chow H et al (1999) Micro slit machining using electro-discharge machining with a modified rotary disk electrode (RDE). J Mater Process Technol 91(1):161–166. https://doi.org/10.1016/S0924-0136(98)00435-X

    Article  MathSciNet  Google Scholar 

  111. Khan MAR, Rahman M, Kadirgama K (2014) Neural network modeling and analysis for surface characteristics in electrical discharge machining. Procedia Eng 90:631–636. https://doi.org/10.1016/j.proeng.2014.11.783

    Article  Google Scholar 

  112. Qin G et al (2003) Wire electric discharge machining induced titanium hydride in Ti–46Al–2Cr alloy. Intermetallics 11(9):907–910. https://doi.org/10.1016/S0966-9795(03)00102-X

    Article  Google Scholar 

  113. Kuriakose S, Shunmugam M (2005) Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. J Mater Process Technol 170(1):133–141. https://doi.org/10.1016/j.jmatprotec.2005.04.105

    Article  Google Scholar 

  114. Zhao SG et al (2013) Study on the experimental of the electrical discharge machining titanium alloy on gas dielectric. Adv Mater Res 644:171–174

    Article  Google Scholar 

  115. Klocke F, Holsten M, Hensgen L, Klink A (2014) Experimental investigations on sinking-EDM of seal slots in gamma-TiAl. Procedia CIRP 24:92–96. https://doi.org/10.1016/j.procir.2014.07.143

    Article  Google Scholar 

  116. Aspinwall DK, Dewes RC, Mantle AL (2005) The machining of γ-TiAI intermetallic alloys. CIRP Ann Manuf Technol 54(1):99–104. https://doi.org/10.1016/S0007-8506(07)60059-6

    Article  Google Scholar 

  117. Aspinwall D et al (2003) Electrical discharge surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire. CIRP Ann-Manuf Technol 52(1):151–156. https://doi.org/10.1016/S0007-8506(07)60553-8

    Article  Google Scholar 

  118. Sarkar S, Sekh M, Mitra S, Bhattacharyya B (2008) Modeling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation. J Mater Process Technol 205(1):376–387. https://doi.org/10.1016/j.jmatprotec.2007.11.194

    Article  Google Scholar 

  119. Sarkar S, Mitra S, Bhattacharyya B (2006) Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. Int J Adv Manuf Technol 27(5–6):501–508. https://doi.org/10.1007/s00170-004-2203-7

    Article  Google Scholar 

  120. Sarkar et al (2005) Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. J Mater Process Technol 159(3):286–294

    Article  Google Scholar 

  121. Mitra S et al. Micro electro discharge machine of γ-titanium aluminide alloy. http://stumejournals.com/mtm/Archive/2012/1/12_40_Souren%20Mitra.pdf. Last accessed on Jan. 14, 2018

  122. Jabbaripour B, Sadeghi MH, Shabgard MR, Faraji H (2013) Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic. J Manuf Process 15(1):56–68. https://doi.org/10.1016/j.jmapro.2012.09.016

    Article  Google Scholar 

  123. Ntasi A et al (2010) The effect of electro discharge machining (EDM) on the corrosion resistance of dental alloys. Dent Mater 26(12):e237–e245

    Article  Google Scholar 

  124. Wang X, Liu Z, Xue R, Tian Z, Huang Y (2014) Research on the influence of dielectric characteristics on the EDM of titanium alloy. Int J Adv Manuf Technol 72(5–8):979–987. https://doi.org/10.1007/s00170-014-5716-8

    Article  Google Scholar 

  125. Liu Y et al (2014) The simulation research of tool wear in small hole EDM machining on titanium alloy. Appl Mech Mater 624:249–254

    Article  Google Scholar 

  126. Soo S et al (2013) The effect of wire electrical discharge machining on the fatigue life of Ti-6Al-2Sn-4Zr-6Mo aerospace alloy. Procedia CIRP 6:215–219. https://doi.org/10.1016/j.procir.2013.03.043

    Article  Google Scholar 

  127. Chen S-L, Lin MH, Huang GX, Wang CC (2014) Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci 311:47–53. https://doi.org/10.1016/j.apsusc.2014.04.204

    Article  Google Scholar 

  128. Tsukahara H et al (2001) Surface modification of titanium using scanning electrode method by electro discharge machining. J Jpn Soc Electr Machin Eng 35(79):24–31. https://doi.org/10.2526/jseme.35.79_24

    Google Scholar 

  129. Tsukahara H et al (2004) Tribological properties of surface modified layer of titanium using EDM process. J Jpn Soc Electr Mach Eng 38(87):24–30. https://doi.org/10.2526/jseme.38.24. in Japanese

    Google Scholar 

  130. Obara et al (2005) Study of electrical discharge machining of titanium. J Jpn Soc Electr Mach Eng 39(92):92_36–92_41

    Google Scholar 

  131. Zain ZM et al (2011) Influence of electrode profiles on electrical discharge machining of titanium. Adv Mater Res 264-265:1205–1210

    Article  Google Scholar 

  132. Chow H-M, Yang LD, Lin CT, Chen YF (2008) The use of SiC powder in water as dielectric for micro-slit EDM machining. J Mater Process Technol 195(1):160–170. https://doi.org/10.1016/j.jmatprotec.2007.04.130

    Article  Google Scholar 

  133. Yan BH, Chung Tsai H, Yuan Huang F (2005) The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium. Int J Mach Tools Manuf 45(2):194–200. https://doi.org/10.1016/j.ijmachtools.2004.07.006

    Article  Google Scholar 

  134. Chow H-M, Yan BH, Huang FY, Hung JC (2000) Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining. J Mater Process Technol 101(1):95–103. https://doi.org/10.1016/S0924-0136(99)00458-6

    Article  Google Scholar 

  135. Kolli M, Adepu K (2014) Influence of span 20 surfactant and graphite powder added in dielectric fluid on EDM of titanium alloy. Bonfring Int J Ind Eng Manag Sci 4(2):62–67. https://doi.org/10.9756/BIJIEMS.4820

    Google Scholar 

  136. Yaman K, Çoğun C (2014) An experimental work on using conductive powder-filled polymer composite cast material as tool electrode in EDM. Int J Adv Manuf Technol 73(1–4):535–543

    Article  Google Scholar 

  137. Liew AAN (2010) Optimization of Machining Parameters of Titanium Alloy in Electrical Discharge Machining Based on Artificial Neural Network. Thesis, Universiti Malaysia Pahang

  138. Ramkumar J et al (2009) Characterization of plasma in micro-EDM discharge using optical spectroscopy. J Manuf Process 11(2):82–87

    Article  Google Scholar 

  139. Manjaiah M et al (2014) Wire electric discharge machining characteristics of titanium nickel shape memory alloy. Trans Nonferrous Metals Soc China 24(10):3201–3209. https://doi.org/10.1016/S1003-6326(14)63461-0

    Article  Google Scholar 

  140. Xiangzhi W et al (2013) Study on influence by the conductivity of dielectrics on EDM performance of titanium alloy. Electromach Mould 4:004

    Google Scholar 

  141. Gao J et al (2014) Research of EDM titanium alloy TC11 based on GM(1,N) model and BP neural network. Appl Mech Mater 556-562:395–398

    Article  Google Scholar 

  142. Wansheng Z, Zhenlong W, Shichun D, Guanxin C, Hongyu W (2002) Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J Mater Process Technol 120(1):101–106. https://doi.org/10.1016/S0924-0136(01)01149-9

    Article  Google Scholar 

  143. Kolli M, Kumar A (2014) Effect of boron carbide powder mixed into dielectric fluid on electrical discharge machining of titanium alloy. Procedia Mater Sci 5:1957–1965. https://doi.org/10.1016/j.mspro.2014.07.528

    Article  Google Scholar 

  144. Rongyuan X et al (2013) Influence of the dielectric characteristics on EDM performance of titanium alloy. Electromach Mould 6:003

    Google Scholar 

  145. Abdulkareem S et al (2011) Influence of electrode cooling on material migration among the electrodes during EDM of titanium alloy. Adv Mater Res 264-265:1199–1204

    Article  Google Scholar 

  146. Abdulkareem S et al (2011) Influence of electrode cooling on recast layers and micro crack in EDM of titanium. Adv Mater Res 264-265:1180–1186

    Article  Google Scholar 

  147. Mahardika et al (2008) A new approach on the determination of ease of machining by EDM processes. Int J Mach Tool Manuf 48(7):746–760

    Article  Google Scholar 

  148. Shangping G (2004) The tinting technique of the titanium alloy surface by use of EDM. Electromach Mould 6:017

    Google Scholar 

  149. Minami H et al (1998) Coloring method for titanium alloy by using EDM process. J Jpn Soc Electr Mach Eng 32(70):32–39. https://doi.org/10.2526/jseme.32.70_32. in Japanese

    Google Scholar 

  150. Minami H et al (2001) Coloring of titanium alloy by EDM (2nd report) analysis of coloring mechanism. J Jpn Soc Electr Mach Eng 35(80):30–35. https://doi.org/10.2526/jseme.35.80_30. in Japanese

    Google Scholar 

  151. Minami H et al (2002) Coloring of titanium alloy by EDM (3rd report) properties of colored surface. J Jpn Soc Electr Mach Eng 36(83):62–67. https://doi.org/10.2526/jseme.36.83_62. in Japanese

    Google Scholar 

  152. Yaman K, Çoğun C (2014) An experimental work on using conductive powder-filled polymer composite cast material as tool electrode in EDM. Int J Adv Manuf Technol 73(1–4):535–543. https://doi.org/10.1007/s00170-014-5839-y

    Article  Google Scholar 

  153. Tsukahara H et al (1999) Surface modification of titanium using EDM process. J Jpn Soc Electr Mach Eng 33(74):9–15. https://doi.org/10.2526/jseme.33.74_9. in Japanese

    Google Scholar 

Download references

Acknowledgments

The Authors want to thank United Arab Emirates University, Al Ain, UAE for funding this research through Research Start-up 2015 fund, Grant number 31N233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaber E. Abu Qudeiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Qudeiri, J.E., Mourad, AH.I., Ziout, A. et al. Electric discharge machining of titanium and its alloys: review. Int J Adv Manuf Technol 96, 1319–1339 (2018). https://doi.org/10.1007/s00170-018-1574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1574-0

Keywords

Navigation