Skip to main content

Collaborative and traditional robotic assembly: a comparison model


In the last decade, robot manufacturers have started to produce collaborative industrial robots, that can work while safely sharing the workspace with a human operator. In this way, robot repeatability, combined with human dexterity, can move automated assembly to a new level of flexibility. The aim of this paper is to investigate the conditions at which such systems, called collaborative assembly systems (CAS), can be better performing than the traditional manual or automated assembly systems. Throughput and unit direct production cost are considered for the comparison. The estimation of such performance figures, which is straightforward in traditional automated assembly systems, becomes more complex in the case of collaborative systems. In fact, both task allocation between the human and the robot, and the way they collaborate/interfere with each other during assembly, affect the throughput of CAS. With the aim of taking into account such parameters, we introduce a set of system variables and a mathematical model which allow to estimate the real convenience of the implementation of CAS in the industrial scenario. In the paper, the model is applied to compare CAS to manual assembly and to noncollaborative automated assembly, both with parameters derived from the literature and in a case study. Finally, a set of implementation conditions is derived, related to the task allocation that maximises CAS performance.

This is a preview of subscription content, access via your institution.


  1. 1.

    Wolfson W, Gordon SJ (1997) . Assem Autom 17(2):116

    Article  Google Scholar 

  2. 2.

    Rosati G, Faccio M, Carli A, Rossi A (2013) . Assem Autom 33(1):8

    Article  Google Scholar 

  3. 3.

    Barbazza L, Faccio M, Oscari F, Rosati G (2017) . Assem Autom 37(4):411

    Article  Google Scholar 

  4. 4.

    Heilala J, Montonen J, Väätäinen O (2008) . Proc Inst Mech Eng B J Eng Manuf 222(10):1289

    Article  Google Scholar 

  5. 5.

    Edmondson N, Redford A (2002) . Assem Autom 22(2):139

    Article  Google Scholar 

  6. 6.

    Finetto C, Faccio M, Rosati G, Rossi A (2014) . Int J Adv Manuf Technol 70(5-8):797

    Article  Google Scholar 

  7. 7.

    Rosati G, Faccio M, Finetto C, Carli A (2013) . Assem Autom 33(2):165

    Article  Google Scholar 

  8. 8.

    Colgate JE, Wannasuphoprasit W, Peshkin MA (1996) .. In: Proceedings of the 1996 ASME international mechanical engineering congress and exposition (ASME)

  9. 9.

    Dong Y, Zhang L, Lu D, Bernbardt R, Surdilovic D (2004) .. In: Fifth world congress on intelligent control and automation, 2004. WCICA, vol. 5 (IEEE, 2004), pp 4635–4639

  10. 10.

    Ou J, Fussell SR, Chen X, Setlock LD, Yang J (2003) .. In: Proceedings of the 5th international conference on Multimodal interfaces (ACM), pp 242–249

  11. 11.

    McBean JM (2004) Design and control of a voice coil actuated robot arm for human-robot interaction. Ph.D. thesis Massachusetts Institute of Technology

  12. 12.

    Krüger J, Lien TK, Verl A (2009) . CIRP Ann Manuf Technol 58(2):628

    Article  Google Scholar 

  13. 13.

    Hägele M, Schaaf W, Helms E (2002) .. In: Proceedings of the 33rd ISR (International Symposium on Robotics), vol 7

  14. 14.

    Chen F, Sekiyama K, Cannella F, Fukuda T (2014) . IEEE Trans Autom Sci Eng 11(4):1065

    Article  Google Scholar 

  15. 15.

    Arai T, Kato R, Fujita M (2010) . CIRP Ann Manuf Technol 59(1):5

    Article  Google Scholar 

  16. 16.

    Rahman SM, Ikeura R (2017) . IET Electr Power Appl 11(7):1235

    Article  Google Scholar 

  17. 17.

    Matsas E, Vosniakos GC, Batras D (2018) . Robot Comput Integr Manuf 50:168

    Article  Google Scholar 

  18. 18.

    Schmidt B, Wang L (2013) . Procedia CIRP 7:545

    Article  Google Scholar 

  19. 19.

    Flacco F, Kröger T, De Luca A, Khatib O (2012) .. In: International conference on Robotics and Automation (ICRA). IEEE, pp 338–345

  20. 20.

    Bascetta L, Ferretti G, Rocco P, Ardö H, Bruyninckx H, Demeester E, Di Lello E (2011) .. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 2971–2978

  21. 21.

    Huber M, Lenz C, Wendt C, Färber B, Knoll A, Glasauer S (2013) .. In: 2013 IEEE in RO-MAN, IEEE, pp 503–508

  22. 22.

    Morioka M, Sakakibara S (2010) . CIRP Ann Manuf Technol 59(1):9

    Article  Google Scholar 

  23. 23.

    Lasota PA, Rossano GF, Shah JA (2014) .. In: 2014 IEEE international conference on automation science and engineering (CASE), IEEE, pp 339–344

  24. 24.

    Cherubini A et al (2016) . Robot Comput Integr Manuf 40:1

    Article  Google Scholar 

  25. 25.

    Faccio M, Gamberi M, Bortolini M (2016) . Int J Prod Res 54(3):761

    Article  Google Scholar 

  26. 26.

    Hu JJ, Huang CN, Wang HW, Shieh PH, Hu JS (2013) .. In: International conference on advanced robotics and intelligent systems (ARIS), IEEE, pp 28–31

  27. 27.

    Pellegrinelli S, Admoni H, Javdani S, Srinivasa S (2016) .. In: 2016 IEEE/RSJ International conference on intelligent robots and systems (IROS), IEEE, pp 831–838

  28. 28.

    Duan F, Tan JTC, Arai T (2011) .. In: 2011 30th Chinese in control conference (CCC), IEEE, pp 5468–5473

  29. 29.

    Green SA, Billinghurst M, Chen X, Chase JG (2008) . Int J Adv Robot Syst 5(1):1

    Article  Google Scholar 

  30. 30.

    Wei K, Ren B (2018) . Sensors 18(2):571

    Article  Google Scholar 

  31. 31.

    Coupeté E, Moutarde F, Manitsaris S (2018) Multi-users online recognition of technical gestures for natural humanrobot collaboration in manufacturing. Autonomous Robots. In press, pp 1–17

  32. 32.

    Brito T, Lima J, Costa P, Piardi L (2017) .. In: Iberian robotics conference (Springer), pp 643–654

  33. 33.

    Mauro S, Scimmi LS, Pastorelli S (2017) .. In: International conference on robotics in Alpe-Adria Danube Region (Springer), pp 344–352

  34. 34.

    Heydaryan S, Suaza Bedolla J, Belingardi G (2018) . Appl Sci 8(3):344

    Article  Google Scholar 

  35. 35.

    Scholer M, Müller IR (2017) . IFAC-PapersOnLine 50(1):5694

    Article  Google Scholar 

  36. 36.

    Wojtynek M, Oestreich H, Beyer O, Wrede S (2017) .. In: Proceedings of the 2017 IEEE/SICE international symposium on system integration

  37. 37.

    Wu B, Hu B, Lin H (2017) .. In: American control conference (ACC), (IEEE, 2017), pp 1536–1541

  38. 38.

    Fantini P, Pinzone M, Sella F, Taisch M (2017) .. In: International conference on applied human factors and ergonomics (Springer), pp 259–268

  39. 39.

    Pearce M, Mutlu B, Shah J, Radwin R (2018) Optimizing makespan and ergonomics in integrating collaborative robots into manufacturing processes. IEEE Trans Autom Sci Eng 15(4):1772–1784

    Article  Google Scholar 

  40. 40.

    Khalid A, Kirisci P, Khan ZH, Ghrairi Z, Thoben KD, Pannek J (2018) . Comput Ind 97:132

    Article  Google Scholar 

  41. 41.

    Rosati G, Boschetti G, Biondi A, Rossi A (2009) . Opt Lasers Eng 47(3):320

    Article  Google Scholar 

  42. 42.

    Rosati G, Faccio M, Barbazza L, Rossi A (2015) . Int J Adv Manuf Technol 81(5-8):1289

    Article  Google Scholar 

  43. 43.

    Finetto C, Rosati G, Faccio M, Rossi A (2015) . Assem Autom 35(1):114

    Article  Google Scholar 

  44. 44.

    Folkard S, Tucker P (2003) . Occup Med 53(2):95

    Article  Google Scholar 

  45. 45.

    Nayak A, Reyes Levalle R, Lee S, Nof SY (2016) . Int J Prod Res 54(23):6969

    Article  Google Scholar 

  46. 46.

    Müller C, Grunewald M, Spengler TS (2017) Redundant configuration of automated flow lines based on “Industry 4.0”-technologies. J Bus Econ 87(7):877–898

    Article  Google Scholar 

  47. 47.

    EN ISO 10218-1: Safety requirements for industrial robots - Part 1: Robots

  48. 48.

    EN ISO 10218-2: Safety requirements for industrial robots - Part 2: Robot systems and integration

  49. 49.

    Sawyer: Rethink robotics unveils new robot. Accessed: 2017-11-16

  50. 50.

    Limère V, Landeghem HV, Goetschalckx M, Aghezzaf EH, McGinnis LF (2012) . Int J Prod Res 50(15):4046

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Maurizio Faccio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faccio, M., Bottin, M. & Rosati, G. Collaborative and traditional robotic assembly: a comparison model. Int J Adv Manuf Technol 102, 1355–1372 (2019).

Download citation


  • Collaborative robots
  • Flexible assembly systems
  • Convenience analysis
  • Unit direct production cost
  • Throughput