Advertisement

Energy efficiency and environmental impacts of high power gas metal arc welding

  • Gunther SproesserEmail author
  • Ya-Ju Chang
  • Andreas Pittner
  • Matthias Finkbeiner
  • Michael Rethmeier
ORIGINAL ARTICLE

Abstract

Single-wire gas metal arc welding (SGMAW) and high power tandem GMAW (TGMAW) are evaluated with respect to energy efficiency. The key performance indicator electrical deposition efficiency is applied to reflect the energy efficiency of GMAW in different material transfer modes. Additionally, the wall-plug efficiency of the equipment is determined in order to identify the overall energy consumption. The results show that energy efficiency can be increased by 24% and welding time is reduced over 50% by application of the tandem processes. A comparative life cycle assessment of a 30-mm-thick weld is conducted to investigate the influences of the energy efficiency on the environmental impacts. The environmental impacts on the categories global warming potential, acidification potential, eutrophication potential, and photochemical ozone creation potential can be reduced up to 11% using an energy-efficient TGMAW process.

Keywords

Life cycle assessment (LCA) Energy efficiency High power welding Tandem gas metal arc welding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aso R, Cheung W (2015) Towards greener horizontal-axis wind turbines: analysis of carbon emissions, energy and costs at the early design stage. J Clean Prod 87:263–274. doi: 10.1016/j.jclepro.2014.10.020 CrossRefGoogle Scholar
  2. 2.
    Beyer A, Gohl H, Hentschel K, Spiegel-Ciobanu V (2002) Literaturreport zum Thema Ozon beim Schweien und bei verwandten Verfahren. Berufsgenossenschaft Metall Nord Süd, ReportGoogle Scholar
  3. 3.
    Bosworth MR (1991) Effective heat input in pulsed current gas metal arc welding with solid wire electrodes. Weld J 70(5):111s–117sGoogle Scholar
  4. 4.
    Bourhis FL, Kerbrat O, Hascoet JY, Mognol P (2013) Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol 69(9):1927–1939. doi: 10.1007/s00170-013-5151-2 CrossRefGoogle Scholar
  5. 5.
    Chandel RS (1990) Electrode melting and plate melting efficiencies of submerged arc welding and gas metal arc welding. Mater Sci Technol 6(8):772–777. doi: 10.1179/mst.1990.6.8.772 CrossRefGoogle Scholar
  6. 6.
    Chang YJ, Sproesser G, Neugebauer S, Wolf K, Scheumann R, Pittner A, Rethmeier M, Finkbeiner M (2015) Environmental and social life cycle assessment of welding technologies. Procedia CIRP 26:293–298. doi: 10.1016/j.procir.2014.07.084 CrossRefGoogle Scholar
  7. 7.
    Drakopoulos S, Salonitis K, Tsoukantas G, Chryssolouris G (2009) Environmental impact of ship hull repair. Int J Sustain Manuf 1(3):361–374. doi: 10.1504/ijsm.2009.02398 CrossRefGoogle Scholar
  8. 8.
    DuPont JN, Marder AR (1995) Thermal efficiency of arc welding processes. Weld J 74(12):406–416Google Scholar
  9. 9.
    Finkbeiner M (2012) From the 40s to the 70s—the future of lca in the ISO 14000 family. Int J Life Cycle Assess 18(1):1–4. doi: 10.1007/s11367-012-0492-x MathSciNetCrossRefGoogle Scholar
  10. 10.
    Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11(2):80–85. doi: 10.1065/lca2006.02.002 CrossRefGoogle Scholar
  11. 11.
    Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning Ad, Oers Lv, Wegener Sleeswijk A, Suh S, Udo de Haes H, Bruijn Hd, Duin Rv, Huijbregts M (2002) Handbook on life cycle assessment—operational guide to the ISO standards. New York, Kluwer Academic PublishersGoogle Scholar
  12. 12.
    Hälsig A (2014) Energy balancing of gas shielded arc welding process. Dissertation. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-140249
  13. 13.
    Hälsig A, Kusch M, Mayr P (2012) New findings on the efficiency of gas shielded arc welding. Weld World 56(11-12):98–104. doi: 10.1007/bf03321400 CrossRefGoogle Scholar
  14. 14.
    Hedegȧrd J, Tolf E, Andersson J (2005) Tandem-mig/mag welding, experiences from optimisation of the process—optimisation of the process—part 2 report no: Im-2005-127. Report, Corrosion and Metals Research Institute - KIMABGoogle Scholar
  15. 15.
    Hübner M, Rose S, Springhetti D, Schnick M, Füssel U (2012) MSG-Tandemschweien mit zusatzdraht zur minderung des abbrandes von legierungselementen und gleichzeitiger erhöhung der abschmelzeffizienz. In: DVS Congress 2012, DVS-Media, Düsseldorf. DVS-Berichte 286, pp 329–334Google Scholar
  16. 16.
    IPCC Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) (2014) Summary for policymakers. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    ISO (2006) ISO 14040 - Environmental management - Life cycle assessment - Principles and framework (ISO 14040:2006)Google Scholar
  18. 18.
    Joseph A, Harwig D, Farson DF, Richardson R (2003) Measurement and calculation of arc power and heat transfer efficiency in pulsed gas metal arc welding. Sci Technol Weld Join 8(6):400–406. doi: 10.1179/136217103225005642 CrossRefGoogle Scholar
  19. 19.
    JRC (2010) International reference life cycle data system (ILCD) handbook—analysis of existing environmental impact assessment methodologies for use in life cycle assessment - Background document. Publications Office of the European Union, LuxembourgGoogle Scholar
  20. 20.
    Kah P, Suoranta R, Martikainen J (2013) Advanced gas metal arc welding processes. Int J Adv Manuf Technol 67(1): 655–674CrossRefGoogle Scholar
  21. 21.
    Kim J, Park K, Hwang Y, Park I (2010) Sustainable manufacturing: a case study of the forklift painting process. Int J Prod Res 48(10):3061–3078. doi: 10.1080/00207540902791785
  22. 22.
    Kusch M, Hönig T (2008) Schweirauchemissionsmessungen an modernen schutzgasschweiverfahren. Schweien und Schneiden 60(2008/9):482–486Google Scholar
  23. 23.
    Larkin N, Pan ZX, Van Duin S, Callaghan M, Li H, Norrish J (2011) Tandem gas metal arc welding for low distortion butt welds. Adv Mater Res 337:511–516. doi: 10.4028/www.scientific.net/AMR.337.511
  24. 24.
    OECD, Environmental and climate change issues in the shipbuilding industry. Report OECD Council Working Party on Shipbuilding (WP6)Google Scholar
  25. 25.
    Pan Z, Larkin N, Li H, Shen C, Lang D, van Duin S, Sterjovski Z (2013) Evaluation of tandem gas metal arc welding for low distortion butt-welds in naval shipbuilding. Australas Weld J 58(2): 35–41Google Scholar
  26. 26.
    PE Interational (2014) Harmonization of LCA methodologies for metals—a whitepaper providing guidance for conducting LCAs for metals and metal products. ReportGoogle Scholar
  27. 27.
    Pépe N, Egerland S, Colegrove PA, Yapp D, Leonhartsberger A, Scotti A (2011) Measuring the process efficiency of controlled gas metal arc welding processes. Sci Technol Weld Join 16(5):412–417. doi: 10.1179/1362171810Y.0000000029 CrossRefGoogle Scholar
  28. 28.
    Pires I, Quintino L, Amaral V, Rosado T (2010) Reduction of fume and gas emissions using innovative gas metal arc welding variants. Int J Adv Manuf Technol 50(5):557–567CrossRefGoogle Scholar
  29. 29.
    Pusavec F, Krajnik P, Kopac J (2010) Transitioning to sustainable production—part i: application on machining technologies. J Clean Prod 18(2):174–184. doi: 10.1016/j.jclepro.2009.08.010
  30. 30.
    Quintino L, Liskevich O, Vilarinho L, Scotti A (2013) Heat input in full penetration welds in gas metal arc welding (gmaw). Int J Adv Manuf Technol 68(9):2833–2840. doi: 10.1007/s00170-013-4862-8
  31. 31.
    Rosado T, Pires I, Quintino L (2009) Opportunities to reduce fume emissions in gas metal arc welding - IIW document VIII-2094–09. ReportGoogle Scholar
  32. 32.
    Rose S, Schnick M, Füssel U (2012a) Cause-and-effect chains of fume formation in gmaw and possibilities of fume reduction by using new welding processes - IIW document VIII-2147-12. ReportGoogle Scholar
  33. 33.
    Rose S, Schnick M, Füssel U (2012b) Untersuchungen der Schweirauchemissionen - möglichkeiten der Reduzierung durch den Einsatz moderner lichtbögen. In: DVS Congress 2012, DVS-Media, Düsseldorf, vol DVS Berichte, p 286Google Scholar
  34. 34.
    Shrivastava A, Krones M, Pfefferkorn F (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168. doi: 10.1016/j.cirpj.2014.10.001 CrossRefGoogle Scholar
  35. 35.
    Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2015) Life cycle assessment of welding technologies for thick metal plate welds. J Clean Prod 108:46–53. doi: 10.1016/j.jclepro.2015.06.121 CrossRefGoogle Scholar
  36. 36.
    Sproesser G, Pittner A, Rethmeier M (2016) Increasing performance and energy efficiency of gas metal arc welding by a high power tandem process. Procedia CIRP 2016(40):649–654. doi: 10.1016/j.procir.2016.01.148 Google Scholar
  37. 37.
    Thompson A, Dilthey U, Fersini M, Richardson I, Dos Santos J, Yapp D, Hedegård J (2008) Improving the competitiveness of the European steel fabrication industry using synchronised tandem wire welding technology. Report 978-92-79-08353-2, European commission, directorate-general for research, research fund for coal and steel unit. doi: 10.2777/1085
  38. 38.
    Trommer G (2002) Welding with two wire electrodes—starus and prospects of the optimisation of gas-shielded metal-arc welding. Weld Cut:122–125Google Scholar
  39. 39.
    Ueyama T, Ohnawa T, Tanaka M, Nakata K (2005) Effects of torch configuration and welding current on weld bead formation in high speed tandem pulsed gas metal arc welding of steel sheets. Sci Technol Weld Join 10(6):750–759. doi: 10.1179/174329305x68750 CrossRefGoogle Scholar
  40. 40.
    Ueyama T, Ohnawa T, Tanaka M, Nakata K (2006) Effect of welding current on high speed welding bead formation in tandem pulsed GMA welding process. Weld Int 20(4):262–267. doi: 10.1533/wint.2006.3576 CrossRefGoogle Scholar
  41. 41.
    Ueyama T, Ohnawa T, Tanaka M, Nakata K Occurrence of arc interaction in tandem pulsed gas metal arc welding. Sci Technol Weld Join 12(6):523–529. doi: 10.1179/174329307x173715
  42. 42.
    Ward H, Burger M, Chang YJ, Fürstmann P, Neugebauer S, Radebach A, Sproesser G, Pittner A, Rethmeier M, Uhlmann E, Steckel J (2016) Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks. J Clean Prod. doi: 10.1016/j.jclepro.2016.02.062
  43. 43.
    Winter M, Thiede S, Herrmann C (2015) Influence of the cutting fluid on process energy demand and surface roughness in grinding—a technological, environmental and economic examination. Int J Adv Manuf Technol 77(9):2005–2017. doi: 10.1007/s00170-014-6557-1 CrossRefGoogle Scholar
  44. 44.
    World Steel Association (2011) Life cycle assessment methodology report. ReportGoogle Scholar
  45. 45.
    Xiang T, Li H, Wei H L, Gao Y (2016) Effects of filling status of cold wire on the welding process stability in twin-arc integrated cold wire hybrid welding. Int J Adv Manuf Technol 83(9):1583–1593CrossRefGoogle Scholar
  46. 46.
    Zukauskaite A, Mickeviciene R, Karnauskaite D, Turkina L (2013) Environmental and human health issue of welding in the shipyard. Kaunas University of Technology, Kaunas, p 2013Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Gunther Sproesser
    • 1
    Email author
  • Ya-Ju Chang
    • 3
  • Andreas Pittner
    • 2
  • Matthias Finkbeiner
    • 3
  • Michael Rethmeier
    • 1
    • 2
  1. 1.Institute of Machine Tools and Factory ManagementTechnische Universität BerlinBerlinGermany
  2. 2.Department of Component SafetyFederal Institute for Materials Research and TestingBerlinGermany
  3. 3.Department of Environmental TechnologyTechnische Universität BerlinBerlinGermany

Personalised recommendations