High strength Ti-6Al-4V alloy fabricated by high-energy cube milling using calcium as process control agent (PCA) and spark plasma sintering

  • N. Kishore Babu
  • Kaspar Kallip
  • Marc Leparoux
  • Khaled A. AlOgab
  • M.K. Talari
  • N. M. Alqahtani


The present study has investigated the influence of calcium process control agent on the microstructure and mechanical properties of powder metallurgy processed samples fabricated by milling and spark plasma sintering technique. The microstructure of spark plasma sintered Ti-6Al-4V with 0.3 wt% Ca (Ti-6Al-4V-0.3Ca-M) samples revealed fine grain structure compared to sintered unmilled (Ti-6Al-4V-UM) samples. The average grain size values of sintered Ti-6Al-4V-0.3Ca-M and Ti-6Al-4V-UM samples are 8 and 60 μm, respectively. The spark plasma sintered Ti-6Al-4V-UM exhibited a yield strength (YS) of 875 ± 10 MPa, ultimate tensile strength (UTS) of 1057 ± 2 MPa, and % elongation (% El) of 15 ± 2. The spark plasma sintered Ti-6Al-4V-0.3Ca-M exhibited higher YS of 964 ± 9 MPa, UTS of 1153 ± 7 MPa, and lower % El of 6 ± 1 when compared to mill annealed Ti-6Al-4V alloy (YS 899 MPa, UTS 978 MPa and %El 15). The higher strength of Ti-6Al-4V-0.3Ca-M sintered samples could be attributed to the fine grain structure and the presence of interstitial elements in the matrix. In contrast, the lower strength of Ti-6Al-4V-UM can be ascribed to its coarse grains.


Spark plasma sintering Calcium Ti-6Al-4V Microstructure Hardness Mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyen RR (1998) Titanium and titanium alloys, metals handbook, desk edn, 2nd edn. ASM, Metals Park, Ohio, pp 575–588Google Scholar
  2. 2.
    Semenova IP, Raab GI, Saitova LR, Valiev RZ (2004) The effect of equal-channel angular pressing on the structure and mechanical behavior of Ti-6Al-4V alloy. Mater Sci Eng A 387(389):805–808CrossRefGoogle Scholar
  3. 3.
    Zherebtsov S, Kudryavtsev E, Kostjuchenko S, Malysheva S, Salishchev G (2012) Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging. Mater Sci Eng A 536:190–196CrossRefGoogle Scholar
  4. 4.
    Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2001) Advanced mechanical properties of pure titanium with ultrafine grained structure. Scr Mater 45:747–752CrossRefGoogle Scholar
  5. 5.
    Yoshimura H, Nakahigashi J (2002) Ultra-fine-grain refinement and superplasticity of titanium alloys obtained through protium treatment. Int J Hydrog Energy 27:769–774CrossRefGoogle Scholar
  6. 6.
    He G, Eckert J, Löser W, Schultz L (2003) Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat Mater 2:33–37CrossRefGoogle Scholar
  7. 7.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184CrossRefGoogle Scholar
  8. 8.
    Watwe AS, Va HW (1994) Mechanical alloying method of titanium-base metals by use of a tin process control agent. United States Patent, US005322666A, June 21Google Scholar
  9. 9.
    Massalski TB (1990) Binary alloy phase diagram. ASM International, Materials Park, OHGoogle Scholar
  10. 10.
    Zadra M (2013) Mechanical alloying of titanium. Mater Sci Eng A 583:105–113CrossRefGoogle Scholar
  11. 11.
    Zadra M (2014) Facile mechanical alloying of titanium sponge. Mater Sci Eng A 590:281–288CrossRefGoogle Scholar
  12. 12.
    Zadra M, Girardini L (2014) High-performance, low-cost titanium metal matrix composites. Mater Sci Eng A 608:155–163CrossRefGoogle Scholar
  13. 13.
    Lim J, Oh J, Lee B, Suh C, Cho S (2013) Method for preparing titanium powder with low oxygen concentration. United States Patent, US008449646 B1, May 28Google Scholar
  14. 14.
    Long Y, Wang T, Zhang HY, Huang XL (2014) Enhanced ductility in a bimodal ultrafine-grained Ti–6Al–4V alloy fabricated by high energy ball milling and spark plasma sintering. Mater Sci Eng A 608:82–89CrossRefGoogle Scholar
  15. 15.
    Figiel P, Rozmus M, Smuk B (2011) Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics. J Achiev Mater Manuf Eng 48(1):29–34Google Scholar
  16. 16.
    Demirskyi D, Borodianska H, Agrawal D, Ragulya A, Sakka Y, Vasylkiv O (2012) Peculiarities of the neck growth process during initial stage of spark-plasma, microwave and conventional sintering of WC spheres. J Alloy Compd 523:1–10CrossRefGoogle Scholar
  17. 17.
    Saheb N (2013) Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Metall Mater 20:152–159CrossRefGoogle Scholar
  18. 18.
    Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19CrossRefGoogle Scholar
  19. 19.
    Raj R, Cologna M, Francis JSC (2011) Influence of externally imposed and internally generated electric fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Am Ceram Soc 94:1941–1965CrossRefGoogle Scholar
  20. 20.
    Sieniawski J, Ziaja W, Kubiak K, Motyka M (2013) Microstructure and mechanical properties of high strength two-phase titanium alloys. In: Sieniawski J, Ziaja W (ed) Titanium alloys-advances in properties control, Intech, Croatia, pp 69–80Google Scholar
  21. 21.
    Long Y, Zhang H, Wang T, Huang X, Li Y, Wu J, Chen H (2013) High-strength Ti-6Al-4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater Sci Eng A 585:408–414CrossRefGoogle Scholar
  22. 22.
    Tellkamp VL, Melmed A, Lavernia EJ (2001) Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A 32:2335–2343CrossRefGoogle Scholar
  23. 23.
    Sun FS, Zúñiga A, Rojas P, Lavernia EJ (2006) Thermal stability and recrystallization of nanocrystalline Ti produced by cryogenic milling. Metall Mater Trans A 37:2069–2078CrossRefGoogle Scholar
  24. 24.
    Babu NK, Ganesh Sundara Raman S (2006) Influence of current pulsing on the microstructure and mechanical properties of Ti-6Al-4V TIG weldments. Sci Technol Weld Join 11(4):442–447CrossRefGoogle Scholar
  25. 25.
    Abkowitz S, Abkowitz SM, Fisher H, Schwartz PJ (2011) High extrusion ratio titanium metal matrix composites. United States Patent, US008043404 B2, October 25Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • N. Kishore Babu
    • 1
  • Kaspar Kallip
    • 1
  • Marc Leparoux
    • 1
  • Khaled A. AlOgab
    • 2
  • M.K. Talari
    • 3
  • N. M. Alqahtani
    • 2
  1. 1.Empa, Swiss Federal Laboratories for Material Science and TechnologyLaboratory for Advanced Materials ProcessingThunSwitzerland
  2. 2.King Abdulaziz City for Science and Technology (KACST)National Centers for Advanced MaterialsRiyadhSaudi Arabia
  3. 3.Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations