Advertisement

An integrated pseudo-spectral simulation of high-speed discharging at an electromagnetic forming conveying a conductive driver sheet

  • Asghar Zajkani
ORIGINAL ARTICLE

Abstract

An integrated computational methodology is implemented based on a pseudo-spectral solution of governing differential equations in a high-speed discharging of the flat spiral coils, which is used in the electromagnetic-forming systems. Both conductive driver sheet and coil are divided into several peripheral segments. Also, eddy currents induced by each segment are computed as well as the fields generated by each wire of the coil corresponding to defined local source points. The model will be established based on the Chebyshev polynomials to calculate spatial and temporal distributions of the magnetic fields. The Houbolt marching method is applied for the time discretization of the Maxwell equations. By adopting a backward process for implicit boundary conditions and summing up overall components of the magnetic fields at the lower surface, it leads to obtaining an integrated response to the problem. A multiple regression analysis is implemented based on the least square error norm to remove additional equations generated in the spectral discretization. An exponential filtering is used to control aliasing phenomenon due to collocation treatment of the mathematical terms. Validation is carried out by comparisons of the results with other works related in the literature.

Keywords

Electromagnetic forming Pseudo-spectral collocation Maxwell equations Flat spiral coil Impulsive load 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming—a review. J Mater Process Technol 211(5):787–829.  https://doi.org/10.1016/j.jmatprotec.2010.12.012 CrossRefGoogle Scholar
  2. 2.
    Guo K, Lei X, Zhan M, Tan J (2017) Electromagnetic incremental forming of integral panel under different discharge conditions. J Manuf Process 1–10Google Scholar
  3. 3.
    Waryoba DR, Roberts W (2017) Application of electromagnetic processing for development of high-performance sintered powder metal parts. Curr Appl Phys 17(10):1288–1297.  https://doi.org/10.1016/j.cap.2017.05.015 CrossRefGoogle Scholar
  4. 4.
    TAKATSU N, KATO M, SATO K, TOBE T (1988) High-speed forming of metal sheets by electromagnetic force. JSME Int J Ser 3, Vib Control Eng Eng Ind 31:142–148Google Scholar
  5. 5.
    Cao Q, Lai Z, Xiong Q, Chen Q, Ding T, Han X, Li L (2017) Electromagnetic attractive forming of sheet metals by means of a dual-frequency discharge current: design and implementation. Int J Adv Manuf Technol 90(1-4):309–316.  https://doi.org/10.1007/s00170-016-9329-2 CrossRefGoogle Scholar
  6. 6.
    Cui X, Mo J, Xiao S, Du E, Zhao J (2011) Numerical simulation of electromagnetic sheet bulging based on FEM. Int J Adv Manuf Technol 57(1-4):127–134.  https://doi.org/10.1007/s00170-011-3273-y CrossRefGoogle Scholar
  7. 7.
    Manea T, Verweij M, Blok H (2002) The importance of velocity term in the electromagnetic forming process. … 27th gen Assem … 2–5Google Scholar
  8. 8.
    El-Azab A, Garnich M, Kapoor A (2003) Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs. J Mater Process Technol 142(3):744–754.  https://doi.org/10.1016/S0924-0136(03)00615-0 CrossRefGoogle Scholar
  9. 9.
    Mamalis A, Manolakos D, Kladas A, Koumoutsos A (2004) Electromagnetic forming and powder processing: trends and developments. Appl Mech Rev 57(4):299.  https://doi.org/10.1115/1.1760766 CrossRefGoogle Scholar
  10. 10.
    Xu JR, Yu HP, Li CF (2012) Effects of process parameters on electromagnetic forming of AZ31 magnesium alloy sheets at room temperature. Int J Adv Manuf Technol 66:1591–1602CrossRefGoogle Scholar
  11. 11.
    Cui X, Li S, Feng H, Li G (2017) A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process. J Comput PhysGoogle Scholar
  12. 12.
    Feng H, Cui XY, Li GY (2017) Coupled-field simulation of electromagnetic tube forming process using a stable nodal integration method. Int J Mech Sci 128–129:332–344CrossRefGoogle Scholar
  13. 13.
    Wang L, Chen ZY, Li CX, Huang SY (2006) Numerical simulation of the electromagnetic sheet metal bulging process. Int J Adv Manuf Technol 30(5-6):395–400.  https://doi.org/10.1007/s00170-005-0094-x CrossRefGoogle Scholar
  14. 14.
    Svendsen B, Chanda T (2005) Continuum thermodynamic formulation of models for electromagnetic thermoinelastic solids with application in electromagnetic metal forming. Contin Mech Thermodyn 17(1):1–16.  https://doi.org/10.1007/s00161-004-0181-5 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Oliveira DA, Worswick MJ, Finn M, Newman D (2005) Electromagnetic forming of aluminum alloy sheet: free-form and cavity fill experiments and model. J Mater Process Technol 170(1-2):350–362.  https://doi.org/10.1016/j.jmatprotec.2005.04.118 CrossRefGoogle Scholar
  16. 16.
    Correia JPM, Siddiqui MA, Ahzi S, Belouettar S, Davies R (2008) A simple model to simulate electromagnetic sheet free bulging process. Int J Mech Sci 50(10-11):1466–1475.  https://doi.org/10.1016/j.ijmecsci.2008.08.008 CrossRefzbMATHGoogle Scholar
  17. 17.
    Woo M-A, Noh H-G, An W-J et al (2016) Numerical study on electrohydraulic forming process to reduce the bouncing effect in electromagnetic forming. Int J Adv Manuf TechnolGoogle Scholar
  18. 18.
    Li F, Mo J, Zhou H, Fang Y (2013) 3D numerical simulation method of electromagnetic forming for low conductive metals with a driver. Int J Adv Manuf Technol 64(9-12):1575–1585.  https://doi.org/10.1007/s00170-012-4124-1 CrossRefGoogle Scholar
  19. 19.
    Fenton GK, Daehn GS (1998) Modeling of electromagnetically formed sheet metal. J Mater Process Technol 75(1-3):6–16.  https://doi.org/10.1016/S0924-0136(97)00287-2 CrossRefGoogle Scholar
  20. 20.
    Choi MK, Huh H, Park N (2017) Process design of combined deep drawing and electromagnetic sharp edge forming of DP980 steel sheet. J Mater Process Technol 244:331–343.  https://doi.org/10.1016/j.jmatprotec.2017.01.035 CrossRefGoogle Scholar
  21. 21.
    Cao Q, Li L, Lai Z, Zhou Z, Xiong Q, Zhang X, Han X (2014) Dynamic analysis of electromagnetic sheet metal forming process using finite element method. Int J Adv Manuf Technol 74(1-4):361–368.  https://doi.org/10.1007/s00170-014-5939-8 CrossRefGoogle Scholar
  22. 22.
    Zajkani A, Salamati M (2016) Numerical and experimental investigation of joining aluminium and carbon fiber reinforced composites by electromagnetic forming process. HIGH SPEED FORMING, HIGH SPEED FORMING 2016. 2016 Apr 27:59Google Scholar
  23. 23.
    Zajkani A, Darvizeh A, Darvizeh M (2013) Analytical modelling of high-rate elasto-viscoplastic deformation of circular plates subjected to impulsive loads using pseudo-spectral collocation method. J Strain Anal Eng Des 48(2):126–149.  https://doi.org/10.1177/0309324712460359 CrossRefGoogle Scholar
  24. 24.
    Zajkani A, Darvizeh A, Darvizeh M, Ansari R (2014) Incremental integrated modeling of dynamic viscoplastic responses of the annular sector plates exposed to shock wave loading. J Strain Anal Eng Des 49(2):86–111.  https://doi.org/10.1177/0309324713503822 CrossRefGoogle Scholar
  25. 25.
    Mason JC, Handscomb DC (2003) Chebyshev polynomials, first ed., CRC press, Boca Raton, Florida, 2003Google Scholar
  26. 26.
    Köroğlu H (1998) Chebyshev series solution of linear Fredholm integrodifferential equations. Int J Math Educ Sci Technol 29(4):489–500.  https://doi.org/10.1080/0020739980290403 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Houbolt JC (1950) A recurrence matrix solution for the dynamic response of elastic aircraft. J Aeronaut Sci 17(9):540–550.  https://doi.org/10.2514/8.1722 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Canuto C, Hussaini MY, Quarteroni AM, Zang, Th.A. J Spectral methods in fluid dynamics. Springer Science & Business Media, 2012Google Scholar
  29. 29.
    Hesthaven JS, Gottlieb S, Gottlieb D (2007) Spectral methods for time-dependent problems. Vol. 21. Cambridge University PressGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations