Advertisement

Microstructure and mechanical property variations within inertia friction-welded joints of stainless steel to steel

Within-joint microstructure and mechanical property distributions must be considered when designing novel applications for dissimilar friction welding
  • N. Switzner
  • Z. Yu
  • M. Eff
  • T. Lienert
  • A. Fonseca
ORIGINAL ARTICLE
  • 83 Downloads

Abstract

Inertia friction (IF) welding was used to fabricate butt joints between AISI type 304L stainless steel and AISI 1018 steel for proof of concept work directed toward novel corrosion-resistant cladding applications. Microstructure and mechanical property trends were identified within each joint in the radial and axial directions. Rotation speed and axial force (pressure) were varied to determine the effects of processing on joint morphology, microstructure, and mechanical properties. Light optical microscopy (LOM) was used to correlate processing parameters with microstructural characteristics. Microhardness mapping revealed the effects of processing conditions through the various weld zones. Tensile testing was performed using digital image correlation (DIC) with the tensile axis normal to the weld interface. Causal relationships were revealed between the processing parameters and microstructure and mechanical property variations in radial and axial directions. IF welding with low axial pressure resulted in an enlarged softened zone near the centerline, whereas high axial pressure resulted in an enlarged softened zone near the periphery. High rotation speed caused an enlarged heat-affected zone (HAZ), and low rotation speed resulted in bond line fracture for the tensile test near the periphery. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) examinations were performed on the bond line fracture surface. The presence of voids at the bond line, near the periphery, detrimental to joint mechanical properties corresponded with inadequate energy input for the low-rotation-speed joint.

Keywords

Inertia friction welding 304L stainless steel 1018 steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The American Welding Society (AWS) is gratefully acknowledged for support of this work through the AWS Graduate Fellowship Grant.

References

  1. 1.
    Vill V (1962) Friction welding of metals. American Welding Society, New YorkGoogle Scholar
  2. 2.
    Bevington J (1891) Mode of welding the ends of wire. Rods Etc.Google Scholar
  3. 3.
    Chalmers R (2001) SME 126(5):1Google Scholar
  4. 4.
    Kallee S, Nicholas E (1999) Int Body Eng ConfGoogle Scholar
  5. 5.
    Nicholas E (ed) (1979) Exploiting friction welding in production. The Welding Institute, CambridgeGoogle Scholar
  6. 6.
    Baxter D (1976) Problem solving with inertia weldingGoogle Scholar
  7. 7.
    Smith M, Bichler L, Gholipour J, Wanjara P (2017) Int J Adv Manuf Technol 90(5–8):1931CrossRefGoogle Scholar
  8. 8.
    Faes K, Dhooge A, De Baets P, Afschrift P (2009) Int J Adv Manuf Technol 43(9–10):982CrossRefGoogle Scholar
  9. 9.
    Meyer A (2003) Friction hydro pillar processing—bonding mechanism and properties. Von der Gemeinsamen Fakultȧt fu̇r Maschinenbau und Elektrotechnik der Technischen Universitȧt Carolo-Wilhelmina zu Braunschweig, Ph.D. thesisGoogle Scholar
  10. 10.
    Ma H, Qin G, Geng P, Li F, Meng X, Fu B (2016) J Mater Process Technol 227:24CrossRefGoogle Scholar
  11. 11.
    Li W, Vairis A, Preuss M, Ma T (2016) Int Mater Rev 61(2):71CrossRefGoogle Scholar
  12. 12.
    Kessler M, Suenger S, Haubold M, Zaeh MF (2016) J Mater Process Technol 227:34CrossRefGoogle Scholar
  13. 13.
    Senkov ON, Mahaffey DW, Semiatin SL (2016) Metallur Mater Trans A: Phys Metallur Mater Sci 47(12):6121CrossRefGoogle Scholar
  14. 14.
    Eisazadeh H, Bunn J, Achuthan A, Goldak J, Aidun D (2016) Weld J 95(4):111Google Scholar
  15. 15.
    Dong H, Yu L, Deng D, Zhou W, Dong C (2015) J Mater Sci Technol 31(9):962CrossRefGoogle Scholar
  16. 16.
    Brooks R (2013) Weld Des Fabric 1–3Google Scholar
  17. 17.
    Switzner N (2017) Friction welding for cladding applications : processing, microstructure and mechanical properties of inertia friction welds of stainless steel to low carbon steel and evaluation of wrought and welded austenitic stainless steels for cladding applications. Colorado School of Mines, Ph.D. thesisGoogle Scholar
  18. 18.
    Wang K, Lin W (1974) Weld J 53(6):233Google Scholar
  19. 19.
    Tsang S (1993) In: ASM handbook, vol 6: welding, 702 brazing, and soldering (ASM International Materials Park), pp 315Google Scholar
  20. 20.
    Elmer J, Kautz D (1993) In: ASM handbook, vol 6: welding, brazing, and soldering (ASM International Materials Park), pp 150–155Google Scholar
  21. 21.
    Murti K, Sundaresan S (1985) Weld J 64(12):327Google Scholar
  22. 22.
    Wang S, Liu D, Du N, Zhao Q, Liu S, Xiao J (2014) Int J Electrochem Sci 10(5):4393Google Scholar
  23. 23.
    Maldonado C, North TH (2002) J Mater Sci 37(10):2087CrossRefGoogle Scholar
  24. 24.
    Kirik I, Ozdemir N, Teker T (2012) Int Iron Steel J, 826–831Google Scholar
  25. 25.
    Huang ZW, Li HY, Baxter G, Bray S, Bowen P (2011) J Mater Process Technol 211(12):1927CrossRefGoogle Scholar
  26. 26.
    Hazlett T (1967) Weld J 2:1Google Scholar
  27. 27.
    Sluzalec A (1990) Int J Mech Sci 32(6):467CrossRefGoogle Scholar
  28. 28.
    Lienert T, Nagy P, Baeslack W III (1998) Weld J (January) 14sGoogle Scholar
  29. 29.
    Rao M, Hazlett TH (1970) Weld J, (April) 181–188Google Scholar
  30. 30.
    Kimura M, Inoue H, Kusaka M, Kaizu K, Fuji A (2010) J Solid Mech Mater Eng 4(3):401CrossRefGoogle Scholar
  31. 31.
    Nagy P, Adler L (1992) Mater Eval 11:1328Google Scholar
  32. 32.
    Handa A, Chawla V (2014) Int J Adv Manuf Technol 75(9–12):1493CrossRefGoogle Scholar
  33. 33.
    Aloraier AS, Ibrahim RN, Ghojel J (2004) J Mater Process Technol 153(154):392CrossRefGoogle Scholar
  34. 34.
    Washko S, Aggen G (1990) In: ASM handbook vol 1: properties and selection: irons, steels, and high performance alloys. ASM International, Materials Park, pp 841–907Google Scholar
  35. 35.
    Lange K (1985) Handbook of metal forming. McGraw-Hill Book CompanyGoogle Scholar
  36. 36.
    Prasad Y, Rao K, Sasidhara S (1986) Hot working guide a compendium of processing maps. ASM International, Materials ParkGoogle Scholar
  37. 37.
    Alhajri R (2016) Residual stress quantification of external attachment welding applications to evaluate the need of post-weld heat treatment. Colorado School of Mines, Ph.D. thesisGoogle Scholar
  38. 38.
    Jenkins J (2014) Metal claddingGoogle Scholar
  39. 39.
    Bishop A (2000) Int J Press Vessel Pip 77(2–3):139CrossRefGoogle Scholar
  40. 40.
    Ion JC, Easterling KE, Ashby MF (1984) Acta Metall 32(11):1949CrossRefGoogle Scholar
  41. 41.
    Thewlis G (2004) Mater Sci Technol 20(2):143CrossRefGoogle Scholar
  42. 42.
    Griffin R, Griffin J, Janowski G, Moss C, Bates C (1999) Effect of quench rate and tempering temperature on the microstructure and hardness of commercial steelsGoogle Scholar
  43. 43.
    Shin D, Han S, Park K, Kim Y, Paik Y (2003) Mater Trans 44(8):1630CrossRefGoogle Scholar
  44. 44.
    Wang K, Nagappan P (1970) Weld J 49(9):419sGoogle Scholar
  45. 45.
    Switzner NT, Van Tyne CJ, Mataya MC (2010) J Mater Process Technol 210(8):998CrossRefGoogle Scholar
  46. 46.
    Padilha AF, Plaut RL, Rios PR (2003) ISIJ Int 43(2):135CrossRefGoogle Scholar
  47. 47.
    Lippold J, Odegard B (1984) Weld J 63(1):35Google Scholar
  48. 48.
    Hudok D, Mahaney J, Kish S, Cantwell A, Meter E (1990) In: ASM handbook vol 1: properties and selection, irons, steels, and high performance alloys. ASM International, Materials ParkGoogle Scholar
  49. 49.
    Murti K, Sundaresan S (1983) Metal Construction 15(6):331Google Scholar
  50. 50.
    Dieter G (1986) Mechanical fundamentalsGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • N. Switzner
    • 1
  • Z. Yu
    • 1
  • M. Eff
    • 2
  • T. Lienert
    • 3
  • A. Fonseca
    • 1
  1. 1.George S. Ansell Metallurgical and Materials Engineering DepartmentGoldenUSA
  2. 2.EWIColumbusUSA
  3. 3.Sigma DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations