Dissimilar Cu/Al tube joint by EMF-assisted brazing

  • Yu Lei
  • Shangyu Huang
  • Wei Liu
  • Yong Xiao
  • Jianhua Hu
  • Xueming Du
  • Xifan Zou


In order to increase the reliability and efficiency of brazing joint for Cu/Al dissimilar metal tubes, electromagnetic forming (EMF) was adopted to improve the clearance of Cu/Al dissimilar metal tubes for presetting filler metal. The electromagnetic forming process was numerically investigated to study the effects of discharge voltage and initial clearance on the deformation uniformity of Cu outer tube. With the EMF process, the reasonable clearance between the outer and inner tubes was obtained for brazing joint in experiment. Then, the Cu/Al dissimilar metal tube was brazed with Zn–3Al filler metal at 420 °C for 8 s. The sufficient welding diffusion between Zn–3Al and the Al substrate was found and the thickness of intermetallic compound (IMC) layer on the Zn–3Al/Cu interface was about 2.1 μm. The tensile strength of the Cu/Al joint was 75 MPa and the fracture occurred on the T2 Cu tube. It is validated that EMF-assisted brazing method can achieve excellent metallurgic bonding of Cu/Al dissimilar metal tube joint.


Cu/Al tube Electromagnetic forming Brazing joint Zn-3Al filler metal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This work was supported by the National Nature Science Foundation of China (No. 51475345) and the Open Fund Project of State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2015-01, P2018-013).


  1. 1.
    Mai T, Spowage A (2004) Characterisation of dissimilar joints in laser welding of steel-kovar, copper-steel and copper-aluminium. Mater Sci Eng A 374(1):224–233. CrossRefGoogle Scholar
  2. 2.
    Berlanga-Labari C, Albistur-Goni A, Balerdi-Azpilicueta P, Gutierrez-Peinado M, Fernandez-Carrasquilla J (2011) Study and selection of the most appropriate filler materials for an Al/Cu brazing joint in cooling circuits. Mater Manuf Process 26(2):236–241. CrossRefGoogle Scholar
  3. 3.
    Yu Z, Duan Y, Liu L, Liu S, Liu X, Li X (2009) Growth behavior of Cu/Al intermetallic compounds in hot-dip aluminized copper. Surf Interface Anal 41(5):361–365. CrossRefGoogle Scholar
  4. 4.
    Xia C, Li Y, Puchkov U, Gerasimov S, Wang J (2009) Crack analysis near vacuum brazing interface of Cu/Al dissimilar materials using Al-Si brazing alloy. Mater Sci Technol 25(3):383–387. CrossRefGoogle Scholar
  5. 5.
    Zhang M, Xue S, Ji F, Lou Y, Wang S (2011) Effect of CuAl2 phase on properties and microstructure of Cu/Al brazed joint. Trans China Weld Inst 32(2):93–96Google Scholar
  6. 6.
    Koyama K, Shinozaki K, Ikeda K, Miki K, Kuroki H (2002) Evaluation of brazing properties using Al-Si-Mg-Bi brazing alloy. J Light Met Weld Constr 40(9):13–20Google Scholar
  7. 7.
    Shribman V (2008) Magnetic pulse welding for dissimilar and similar materials. 3th ICHSF 13-22Google Scholar
  8. 8.
    Kore SD, Date PP, Kulkarni SV, Kumar S, Rani D, Kulkarni MR, Desai SV, Rajawat RK, Nagesh KV, Chakravarty DP (2011) Application of electromagnetic impact technique for welding copper-to-stainless steel sheets. Int J Adv Manuf Technol 54(9–12):949–955. CrossRefGoogle Scholar
  9. 9.
    Garg A, Panda B, Shankhwar K (2016) Investigation of the joint length of weldment of environmental-friendly magnetic pulse welding process. Int J Adv Manuf Technol 87(5–8):2415–2426. CrossRefGoogle Scholar
  10. 10.
    Yu H, Tong Y (2016) Magnetic pulse welding of aluminum to steel using uniform pressure electromagnetic actuator. Int J Adv Manuf Technol 91(5–8):2257–2265Google Scholar
  11. 11.
    HP Y, ZD X, Jiang HW, Zhao ZX, Li CF (2012) Magnetic pulse joining of aluminum alloy–carbon steel tubes. Trans Nonferrous Met Soc China 22:548–552CrossRefGoogle Scholar
  12. 12.
    Xu Z, Cui J, Yu H, Li C (2013) Research on the impact velocity of magnetic impulse welding of pipe fitting. Mater Des 49:736–745. CrossRefGoogle Scholar
  13. 13.
    Raoelison RN, Racine D, Zhang Z, Buiron N, Marceau D, Rachik M (2014) Magnetic pulse welding: Interface of Al/Cu joint and investigation of intermetallic formation effect on the weld features. J Manuf Process 16(4):427–434. CrossRefGoogle Scholar
  14. 14.
    Wu X, Shang J (2014) An investigation of magnetic pulse welding of Al/Cu and Interface characterization. J Manuf Sci Eng 136(5):051002. CrossRefGoogle Scholar
  15. 15.
    Zaharinie T, Yusof F, Hamdi M, Ariga T, Moshwan R (2014) Effect of brazing temperature on the shear strength of Inconel 600 joint. Int J Adv Manuf Technol 73(5–8):1133–1140. CrossRefGoogle Scholar
  16. 16.
    Ma B, Zhu H (2015) Study on induction brazing of diamond grits coated by physical vapor deposition. Int J Adv Manuf Technol 80(1–4):599–605. CrossRefGoogle Scholar
  17. 17.
    Zhang M, Lin YB, Lv JQ, Jiang HL (2011) Microstructure and properties of Zn-Al filler metal brazing Cu/Al joint. Adv Mater Res 311:670–673CrossRefGoogle Scholar
  18. 18.
    Man Z, Wang P, Zhang L, Lin Y (2013) Microstructure and mechanical properties of Cu/Al joint brazed with Zn-Al-Ag filler metal. Trans China Weld Inst 34:55–58Google Scholar
  19. 19.
    Ji F, Xue SB, Lou JY, Lou YB, Wang SQ (2012) Microstructure and properties of Cu/Al joints brazed with Zn–Al filler metals. Trans Nonferrous Met Soc China 22(2):281–287. CrossRefGoogle Scholar
  20. 20.
    Wang XG, Li XG, Yan FJ, Wang CG (2017) Effect of heat treatment on the interfacial microstructure and properties of Cu-Al joints. Weld World 61(1):187–196. CrossRefGoogle Scholar
  21. 21.
    Xiao Y, Ji H, Li M, Kim J (2013) Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn–3Al filler metal. Mater Des 52:740–747. CrossRefGoogle Scholar
  22. 22.
    Xiao Y, Li M, Wang L, Huang S, Du X, Liu Z (2015) Interfacial reaction behavior and mechanical properties of ultrasonically brazed Cu/Zn–Al/Cu joints. Mater Des 73:42–49. CrossRefGoogle Scholar
  23. 23.
    Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming—a review. J Mater Process Technol 211(5):787–829. CrossRefGoogle Scholar
  24. 24.
    Feng F, Huang S, Hu J, Meng Z, Lei Y (2013) Analysis of the bulging process of an AZ31B magnesium alloy sheet with a uniform pressure coil. Int J Adv Manuf Technol 69(5–8):1537–1545. CrossRefGoogle Scholar
  25. 25.
    Feng F, Huang S, Meng Z, Hu J, Lei Y, Zhou M, Wu D, Yang Z (2014) Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures. Mater Des 57(5):10–20. CrossRefGoogle Scholar
  26. 26.
    Yu H, Sun L, Zhang X, Wang S, Li C (2016) Experiments on electrohydraulic forming and electromagnetic forming of aluminum tube. Int J Adv Manuf Technol 89(9–12):3169–3176Google Scholar
  27. 27.
    Haratmeh HE, Arezoodar AF, Farzin M (2016) Numerical and experimental investigation of inward tube electromagnetic forming. Int J Adv Manuf Technol 88(5–8):1–11Google Scholar
  28. 28.
    Meng Z, Huang S, Hu J, Huang W, Xia Z (2011) Effects of process parameters on warm and electromagnetic hybrid forming of magnesium alloy sheets. J Mater Process Technol 211(5):863–867. CrossRefGoogle Scholar
  29. 29.
    Yan S, Huang S, Liu W, Hu J, Lei Y, Zhou M (2017) Experimental and numerical investigation of temperature evolution during electromagnetic pulsed compaction of powders. Powder Technol 306:1–9. CrossRefGoogle Scholar
  30. 30.
    Benartzy A, Stern A, Frage N, Shribman V (2008) Interface phenomena in aluminium–magnesium magnetic pulse welding. Sci Technol Weld Join 13(4):402–408. CrossRefGoogle Scholar
  31. 31.
    Elsen A, Ludwig M, Schaefer R, Groche P (2010) Fundamentals of EMPT-welding. 4th ICHSF 117-126Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Yu Lei
    • 1
    • 2
  • Shangyu Huang
    • 1
    • 2
  • Wei Liu
    • 1
    • 2
  • Yong Xiao
    • 1
  • Jianhua Hu
    • 1
  • Xueming Du
    • 1
  • Xifan Zou
    • 1
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.State Key Laboratory of Materials Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations