Skip to main content
Log in

Plastic deformation-based energy consumption modelling for machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To predict energy consumption in machining, a mathematical modelling method to mimic the cutting energy consumption during machining is proposed in this paper. The established model is based on the law of energy conservation. The mechanical material property coefficients and cutting parameters are included in the model by using material deformation theory and friction calculation which are used to represent the phenomena in machining. Cutting energy of material removal process is refined by analysing the effect of tool edge geometry. In addition, the machining process is divided into two machining elements, linear element and circular arc element, of which energy consumptions are established based on the principal theories above. Calculation method on the instantaneous cutting thickness for circular arc elements is proposed. Finally, a test example is given to validate the proposed modelling approach. With the proposed method, the separate impacts of the factors (e.g. cutting parameters, workpiece, tool) have been analysed and the physical background behind the known experimental dependence of the cutting parameters on cutting energy is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahimifard S, Seow Y, Childs T (2010) Minimising embodied product energy to support energy efficient manufacturing. CIRP Ann-Manuf Technol 59(1):25–28. https://doi.org/10.1016/j.cirp.2010.03.048

    Article  Google Scholar 

  2. Zhou L, Li J, Li F, Meng Q, Li J, Xu X (2016) Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. J Clean Prod 112:3721–3734. https://doi.org/10.1016/j.jclepro.2015.05.093

    Article  Google Scholar 

  3. SANDVIK Coromant (2017) Calculator for power & torque. In: SANDVIK Coromant. http://www2.coromant.sandvik.com/coromant/calculators/aero/power_torque/index.htm. Accessed 20 May 2017

  4. Iscar (2017) Iscar’s machining power. In: ISCAR LTD. http://mpwr.iscar.com/machiningpwr/machiningpower.wgx?vwginstance=22673daf0eeb4e83a035c913610bb042. Accessed 20 May 2017

  5. Munoz AA, Sheng P (1995) An analytical approach for determining the environmental impact of machining processes. J Mater Process Technol 53(3-4):736–758. https://doi.org/10.1016/0924-0136(94)01764-R

    Article  Google Scholar 

  6. Shao H, Wang HL, Zhao XM (2004) A cutting power model for tool wear monitoring in milling. Int J Mach Tools Manuf 44(14):1503–1509. https://doi.org/10.1016/j.ijmachtools.2004.05.003

    Article  Google Scholar 

  7. Altintas Y, Yellowley I (1989) In-process detection of tool failure in milling using cutting force models. J Eng Ind 111(2):149. https://doi.org/10.1115/1.3188744

    Article  Google Scholar 

  8. Waldorf DJ, Kapoor SG, DeVor RE (1992) Automatic recognition of tool wear on a face mill using a mechanistic modeling approach. Wear 157(2):305–323. https://doi.org/10.1016/0043-1648(92)90069-K

    Article  Google Scholar 

  9. Grzesik W, Denkena B, Żak K, Grove T, Bergmann B (2016) Energy consumption characterization in precision hard machining using CBN cutting tools. Int J Adv Manuf Technol 85(9-12):2839–2845. https://doi.org/10.1007/s00170-015-8091-1

    Article  Google Scholar 

  10. Xu K, Tang K (2016) An energy saving approach for rough milling tool path planning. Comput Aided Des Appl 13(2):253–264. https://doi.org/10.1080/16864360.2015.1084198

    Article  Google Scholar 

  11. Li W, Kara S (2011) An empirical model for predicting energy consumption of manufacturing processes: a case of turning process. Proc Inst Mech Eng Part B J Eng Manuf 225(9):1636–1646. https://doi.org/10.1177/2041297511398541

    Article  Google Scholar 

  12. Wang L, Wang W, Liu D (2017) CIRP Annals-Manufacturing Technology Dynamic feature based adaptive process planning for energy-efficient NC machining. CIRP Ann-Manuf Technol 66(1):1–4. https://doi.org/10.1016/j.cirp.2017.04.015

    Article  Google Scholar 

  13. Liu D, Wang W, Wang L (2017) Energy-efficient cutting parameters determination for NC machining with specified machining accuracy. Procedia CIRP 61:523–528. https://doi.org/10.1016/j.procir.2016.11.215

    Article  Google Scholar 

  14. Budak E, Altintaş Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118(2):216. https://doi.org/10.1115/1.2831014

    Article  Google Scholar 

  15. Yang M, Park H (1991) The prediction of cutting force in ball-end milling. Int J Mach Tools Manuf 31(1):45–54. https://doi.org/10.1016/0890-6955(91)90050-D

    Article  MathSciNet  Google Scholar 

  16. Kline WA, DeVor RE, Lindberg JR (1982) The prediction of cutting forces in end milling with application to cornering cuts. Int J Mach Tool Des Res 22(1):7–22. https://doi.org/10.1016/0020-7357(82)90016-6

    Article  Google Scholar 

  17. Mativenga PT, Rajemi MF (2011) Calculation of optimum cutting parameters based on minimum energy footprint. CIRP Ann-Manuf Technol 60(1):149–152. https://doi.org/10.1016/j.cirp.2011.03.088

    Article  Google Scholar 

  18. Rajemi MF, Mativenga PT, Aramcharoen A (2010) Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. J Clean Prod 18(10-11):1059–1065. https://doi.org/10.1016/j.jclepro.2010.01.025

    Article  Google Scholar 

  19. Santos JP, Oliveira M, Almeida FG, Pereira JP, Reis A (2011) Improving the environmental performance of machine-tools: influence of technology and throughput on the electrical energy consumption of a press-brake. J Clean Prod 19(4):356–364. https://doi.org/10.1016/j.jclepro.2010.10.009

    Article  Google Scholar 

  20. Diaz N, Choi S, Helu M, Chen Y, Jayanathan S, Yasui Y, Kong D, Pavanaskar S, Dornfeld D (2010) Machine tool design and operation strategies for green manufacturing. Lab Manuf, Sustain

    Google Scholar 

  21. Tönissen S (2009) Power demand of precision machine tools. Dissertation, University of California

  22. Fang K, Uhan N, Zhao F, Sutherland JW (2011) A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J Manuf Syst 30(4):234–240. https://doi.org/10.1016/j.jmsy.2011.08.004

    Article  Google Scholar 

  23. Quintana G, Ciurana J, Ribatallada J (2011) Modelling power consumption in ball-end milling operations. Mater Manuf Process 26(5):746–756. https://doi.org/10.1080/10426910903536824

    Article  Google Scholar 

  24. Jia S, Tang R, Lv J (2014) Therblig-based energy demand modeling methodology of machining process to support intelligent manufacturing. J Intell Manuf 25(5):913–931. https://doi.org/10.1007/s10845-012-0723-9

    Article  Google Scholar 

  25. Ma Y, Feng P, Zhang J, Wu ZYD (2015) Energy criteria for machining-induced residual stresses in face milling and their relation with cutting power. Int J Adv Manuf Technol 81(5-8):1023–1032. https://doi.org/10.1007/s00170-015-7278-9

    Article  Google Scholar 

  26. Bi ZM, Wang L (2012) Optimization of machining processes from the perspective of energy consumption: a case study. J Manuf Syst 31(4):420–428. https://doi.org/10.1016/j.jmsy.2012.07.002

  27. Bi ZM, Wang L (2012) Energy modeling of machine tools for optimization of machine setups. IEEE Trans Autom Sci Eng 9(3):607–613. https://doi.org/10.1109/TASE.2012.2195173

    Article  Google Scholar 

  28. Hu S (2012) Energy consumption characteristics of multiple-component of modern CNC machine tools. Dissertation, Chongqing University

  29. Wang X, Luo W, Zhang H, Dan B, Li F (2016) Energy consumption model and its simulation for manufacturing and remanufacturing systems. Int J Adv Manuf Technol 87(5-8):1557–1569. https://doi.org/10.1007/s00170-015-7057-7

    Article  Google Scholar 

  30. Peng T, Xu X, Wang L (2013) A novel energy demand modelling approach for CNC machining based on function blocks. J Manuf Syst 33(1):196–208. https://doi.org/10.1016/j.jmsy.2013.12.004

    Article  Google Scholar 

  31. Jiang H, He L, Yang X, Zou Z, Zhan G (2017) Prediction and experimental research on cutting energy of a new cemented carbide coating micro groove turning tool. Int J Adv Manuf Technol 89(5-8):2335–2343. https://doi.org/10.1007/s00170-016-9270-4

    Article  Google Scholar 

  32. Usui E (1982) Grinding and polishing. China Machine Press, Beijing

    Google Scholar 

  33. Hosford WF, Caddell RM, Hosford WF (2011) Metal forming: mechanics and metallurgy, Fourth edn. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511976940

    Book  Google Scholar 

  34. Astakhov VP, Shvets S (2004) The assessment of plastic deformation in metal cutting. J Mater Process Tech 146(2):193–202. https://doi.org/10.1016/j.jmatprotec.2003.10.015

  35. Poletica M (1969) Contact loads on tool interfaces. Machinostroenie, Moscow

    Google Scholar 

  36. Liu Z, Wang L (2007) Sequencing of interacting prismatic machining features for process planning. Comput Ind 58(4):295–303. https://doi.org/10.1016/j.compind.2

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank all the anonymous reviewers for their valuable suggestions on the improvement of our paper.

Funding

This work is supported in part by the National Natural Science Foundation of China (grant no. 51720105009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Wang, L., Lee, CH. et al. Plastic deformation-based energy consumption modelling for machining. Int J Adv Manuf Technol 96, 631–641 (2018). https://doi.org/10.1007/s00170-017-1521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1521-5

Keywords

Navigation