Advertisement

Improving interface morphology and shear failure load of friction stir lap welding by changing material concentrated zone location

  • Zhenlei Liu
  • Zhenlu Zhou
  • Shude Ji
ORIGINAL ARTICLE

Abstract

The morphology of lap interface is the key factor to affect the tensile properties of friction stir lap welding (FSLW) joint. Choosing the pin length as research object, effects of material concentrated zone (MCZ) location on interface morphology and shear failure load of FSLW joint were mainly investigated. Based on 2024-T4 aluminum alloy with 3 mm thickness, four tools were discussed, whose pin lengths are respectively 2, 3, 4, and 5 mm. Material flow models of four different tools are established to explain how MCZ locations over, on, and below lap interfaces influence the formation of hook and cold lap morphology. For both configurations A and B of FSLW joint, lap shear failure load curves changing with pin length exhibit a “N” shape under the special rotating speed varying from 850 to 1000 rpm. The highest lap shear load of 25,665.34 N is attained under the pin length of 3 mm and the rotating speed of 850 rpm. The typical shear and tensile fracture modes are found and the fracture morphologies present ductile fracture.

Keywords

Friction stir lap welding (FSLW) Interface morphology Material concentrated zone Lap shear failure load 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmale J, Fehrenbacher A, Shrivastava A, Pfefferkorn FE (2016) Calibration of dynamic tool–workpiece interface temperature measurement during friction stir welding. Measurement 88:331–342.  https://doi.org/10.1016/j.measurement.2016.02.065 CrossRefGoogle Scholar
  2. 2.
    Silva ACF, Braga DFO, Figueiredo MAVD, Moreira PMGP (2015) Ultimate tensile strength optimization of different FSW aluminium alloy joints. Int J Adv Manuf Technol 79(5):805–814.  https://doi.org/10.1007/s00170-015-6871-2 CrossRefGoogle Scholar
  3. 3.
    Li WY, Li JF, Zhang ZH, Gao DL, Chao YJ (2013) Metal flow during friction stir welding of 7075-T651 aluminum alloy. Exp Mech 53(9):1573–1582.  https://doi.org/10.1007/s11340-013-9760-3 CrossRefGoogle Scholar
  4. 4.
    Huang YX, Wan L, Lv SX, Zhang J, GS F (2013) In situ rolling friction stir welding for joining AA2219. Mater Des 50(17):810–816.  https://doi.org/10.1016/j.matdes.2013.03.088 CrossRefGoogle Scholar
  5. 5.
    Kulekci MK, Şik A, Kaluç E (2008) Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints. Int J Adv Manuf Technol 36(9):877–882.  https://doi.org/10.1007/s00170-006-0901-z CrossRefGoogle Scholar
  6. 6.
    Zhang LG, Ji SD, Luan GH, Dong CL, Li F (2011) Friction stir welding of Al alloy thin plate by rotational tool without pin. J Mater Sci Technol 27(7):647–652.  https://doi.org/10.1016/S1005-0302(11)60120-5 CrossRefGoogle Scholar
  7. 7.
    Salari E, Jahazi M, Khodabandeh A, Ghasemi-Nanese H (2014) Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater Des 58(6):381–389.  https://doi.org/10.1016/j.matdes.2014.02.005 CrossRefGoogle Scholar
  8. 8.
    Li ZW, Yue YM, Ji SD, Zhou ZL (2015) Joint features and mechanical properties of friction stir lap welded alclad 2024 aluminum alloy assisted by external stationary shoulder. Mater Des 90:238–247CrossRefGoogle Scholar
  9. 9.
    Liu HJ, Zhao YQ, YY H, Chen SX, Lin Z (2015) Microstructural characteristics and mechanical properties of friction stir lap welding joint of Alclad 7B04-T74 aluminum alloy. Int J Adv Manuf Technol 78(9–12):1415–1425.  https://doi.org/10.1007/s00170-014-6718-2 CrossRefGoogle Scholar
  10. 10.
    Zhou ZL, Yue YM, Ji SD, Li ZW, Zhang LG (2017) Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloy. Int J Adv Manuf Technol 88(5–8):2135–2141.  https://doi.org/10.1007/s00170-016-8924-6 CrossRefGoogle Scholar
  11. 11.
    Yuan W, Carlson B, Verma R, Szymanski R (2012) Study of top sheet thinning during friction stir lap welding of AZ31 magnesium alloy. Sci Technol Weld Join 17(5):375–380.  https://doi.org/10.1179/1362171812Y.0000000018 CrossRefGoogle Scholar
  12. 12.
    Liu HJ, YY H, Peng YX, Dou C, Wang ZG (2016) The effect of interface defect on mechanical properties and its formation mechanism in friction stir lap welded joints of aluminum alloys. J Mater Process Technol 238:244–254.  https://doi.org/10.1016/j.jmatprotec.2016.06.029 CrossRefGoogle Scholar
  13. 13.
    Cederqvist L, Reynolds AP (2001) Factors affecting the properties of friction stir welded aluminum lap joints. Weld J 80(12):281S–287SGoogle Scholar
  14. 14.
    Shirazi H, Kheirandish S, Safarkhanian MA (2015) Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy. Measurement 76:62–69.  https://doi.org/10.1016/j.measurement.2015.08.001 CrossRefGoogle Scholar
  15. 15.
    Fadaeifard F, Matori KA, Toozandehjani M, Daud AR, Ariffin MKAM, Othman NK, Gharavi F, Ramzani AH, Ostovan F (2014) Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy. Trans Nonferrous Metals Soc China 24(4):1004–1011.  https://doi.org/10.1016/S1003-6326(14)63155-1 CrossRefGoogle Scholar
  16. 16.
    Yazdanian S, Chen ZW, Littlefair G (2012) Effects of friction stir lap welding parameters on weld features on advancing side and fracture strength of AA6060-T5 welds. J Mater Sci 47(3):1239–1241CrossRefGoogle Scholar
  17. 17.
    Babu S, Ram GDJ, Venkitakrishnan PV, Reddy GM, Rao KP (2012) Microstructure and mechanical properties of friction stir lap welded aluminum alloy AA2014. J Mater Sci Technol 28(5):414–426.  https://doi.org/10.1016/S1005-0302(12)60077-2 CrossRefGoogle Scholar
  18. 18.
    Yue YM, Li ZW, Ji SD, Huang YX, Zhou ZL (2016) Effect of reverse-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy. J Mater Sci Technol 32(7):671–675.  https://doi.org/10.1016/j.jmst.2016.03.005 CrossRefGoogle Scholar
  19. 19.
    Costa MI, Verdera D, Costa JD, Leitao C, Rodrigues DM (2015) Influence of pin geometry and process parameters on friction stir lap welding of AA5754-H22 thin sheets. J Mater Process Technol 225:385–392.  https://doi.org/10.1016/j.jmatprotec.2015.06.020 CrossRefGoogle Scholar
  20. 20.
    Gao Y, Nakata K, Nagatsuka K, Liu FC, Liao J (2015) Interface microstructural control by probe length adjustment in friction stir welding of titanium and steel lap joint. Mater Des 65:17–23.  https://doi.org/10.1016/j.matdes.2014.08.063 CrossRefGoogle Scholar
  21. 21.
    Wang M, Zhang HJ, Zhang JB, Zhang X, Yang L (2014) Effect of pin length on hook size and joint properties in friction stir lap welding of 7B04 aluminum alloy. J Mater Eng Perform 23(5):1881–1886.  https://doi.org/10.1007/s11665-014-0936-5 CrossRefGoogle Scholar
  22. 22.
    Cao X, Jahazi M (2011) Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy. Mater Des 32(1):1–11.  https://doi.org/10.1016/j.matdes.2010.06.048 CrossRefGoogle Scholar
  23. 23.
    Zhang ZH, Li WY, Feng Y, Li JL, Chao YJ (2015) Global anisotropic response of friction stir welded 2024 aluminum sheets. Acta Mater 92:117–125.  https://doi.org/10.1016/j.actamat.2015.03.054 CrossRefGoogle Scholar
  24. 24.
    Wan L, Huang YX, Guo WQ, Lv SX, Feng JC (2014) Mechanical properties and microstructure of 6082-T6 aluminum alloy joints by self-support friction stir welding. J Mater Sci Technol 30(12):1243–1250.  https://doi.org/10.1016/j.jmst.2014.04.009 CrossRefGoogle Scholar
  25. 25.
    Song YB, Yang XQ, Cui L, Hou XP, Shen ZK, Xu Y (2014) Defect features and mechanical properties of friction stir lap welded dissimilar AA2024–AA7075 aluminum alloy sheets. Mater Des 55(55):9–18.  https://doi.org/10.1016/j.matdes.2013.09.062 CrossRefGoogle Scholar
  26. 26.
    Yue YM, Zhou ZL, Ji SD, Zhang LG, Li ZW (2017) Improving joint features and tensile shear properties of friction stir lap welded joint by an optimized bottom-half-threaded pin tool. Int J Adv Manuf Technol 90(9):2597–2603.  https://doi.org/10.1007/s00170-016-9591-3 CrossRefGoogle Scholar
  27. 27.
    Yue YM, Zhou ZL, Ji SD, Zhang J, Li ZW (2017) Effect of welding speed on joint feature and mechanical properties of friction stir lap welding assisted by external stationary shoulders. Int J Adv Manuf Technol 89(5):1691–1698.  https://doi.org/10.1007/s00170-016-9240-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringShenyang Aerospace UniversityShenyangPeople’s Republic of China

Personalised recommendations