Skip to main content

Advertisement

Log in

Friction welding of AA6061 to AISI 316L steel: characteristic analysis and novel design equipment

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

AA6061 aluminum alloy and AISI 316L steel were joined by friction welding with a specific steel collar fixed on aluminum side to control its expelling, flash morphology, and the formation of intermetallic compound (IMC) layer. The effects of friction time and welding groove were investigated by analyzing microstructure characteristics and mechanical properties. Eight typical zones could be found, and the existence of some certain zones depended on friction time. The thickness of IMC layers declined from 4 to 0.2 μm with friction time decreasing from 40 to 10 s, while a 15° welding groove machined on the end of steel helped realize thinning of IMC layer to a thickness of 0.3 μm. The conditions of 25-s friction time and processing of the 15° welding groove got best mechanical properties with average tensile strength of 166.32 MPa and average elongation rate of 9.47%. Tensile strength and elongation rate can improve 16.15 and 745.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torkamany MJ, Tahamtan S, Sabbaghzadeh J (2010) Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser. Mater Des 31(1):458–465. https://doi.org/10.1016/j.matdes.2009.05.046

    Article  Google Scholar 

  2. Zhang Y, Huang J, Cheng Z, Zheng Y, Hai C, Li P, Chen SH (2016) Study on MIG-TIG double-sided arc welding-brazing of aluminum and stainless steel. Mater Lett 172:146–148. https://doi.org/10.1016/j.matlet.2016.02.146

    Article  Google Scholar 

  3. Fujii HT, Goto Y, Sato YS, Kokawa H (2016) Microstructure and lap shear strength of the weld interface in ultrasonic welding of Al alloy to stainless steel. Scr Mater 116:135–138. https://doi.org/10.1016/j.scriptamat.2016.02.004

    Article  Google Scholar 

  4. Zhang H, Liu J (2011) Microstructure characteristics and mechanical property of aluminum alloy/stainless steel lap joints fabricated by MIG welding-brazing process. Mater Sci Eng A 528(19-20):6179–6185. https://doi.org/10.1016/j.msea.2011.04.039

    Article  Google Scholar 

  5. Lin SB, Song JL, Yang CL, Fan CL, Zhang DW (2010) Brazability of dissimilar metals tungsten inert gas butt welding-brazing between aluminum alloy and stainless steel with Al–Cu filler metal. Mater Des 31(5):2637–2642. https://doi.org/10.1016/j.matdes.2009.12.005

    Article  Google Scholar 

  6. Zhang MJ, Chen GY, Zhang Y, KR W (2013) Research on microstructure and mechanical properties of laser keyhole welding–brazing of automotive galvanized steel to aluminum alloy. Mater Des 45:24–30. https://doi.org/10.1016/j.matdes.2012.09.023

    Article  Google Scholar 

  7. Sierraa G, Peyreb P, Deschaux-Beaumec F, Stuartb D, Frasc G (2007) Steel to aluminium key-hole laser welding. Mater Sci Eng A 447(1-2):197–208. https://doi.org/10.1016/j.msea.2006.10.106

    Article  Google Scholar 

  8. Tricarico L, Spina R (2010) Experimental investigation of laser beam welding of explosion-welded steel/aluminum structural transition joints. Mater Des 31(4):1981–1992. https://doi.org/10.1016/j.matdes.2009.10.032

    Article  Google Scholar 

  9. Naimon ER, Doyle JH, Rice CR, Walmsley DR (1981) Diffusion welding of aluminum to stainless steel. Weld J 60:17–20

    Google Scholar 

  10. Qiu R, Iwamoto C, Satonaka S (2009) Interfacial microstructure and strength of steel/Al alloy joints welded by resistance spot welding with cover plate. J Mater Process Technol 209(8):4186–4193. https://doi.org/10.1016/j.jmatprotec.2008.11.003

    Article  Google Scholar 

  11. Lee KJ, Kumai S, Arai T, Aizawac T (2007) Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding. Mater Sci Eng A 471(1-2):95–101. https://doi.org/10.1016/j.msea.2007.04.033

    Article  Google Scholar 

  12. Kore SD, Date PP, Kulkarni SV (2008) Electromagnetic impact welding of aluminum to stainless steel sheets. J Mater Process Technol 208(1-3):486–493. https://doi.org/10.1016/j.jmatprotec.2008.01.039

    Article  Google Scholar 

  13. Tsujino J, Hidai K, Hasegawa A, Kanai R, Matsuura H, Matsushima K, Ueoka T (2002) Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens. Ultrasonics 40(1-8):371–374. https://doi.org/10.1016/S0041-624X(02)00124-5

    Article  Google Scholar 

  14. Coelho RS, Kostka A, Santos JFD, Kaysser-Pyzalla A (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng A 556:175–183. https://doi.org/10.1016/j.msea.2012.06.076

    Article  Google Scholar 

  15. Rest CVD, Jacques PJ, Simar A (2014) On the joining of steel and aluminium by means of a new friction melt bonding process. Scr Mater 77:25–28. https://doi.org/10.1016/j.scriptamat.2014.01.008

    Article  Google Scholar 

  16. Das H, Ghosh RN, Pal TK (2014) Study on the formation and characterization of the intermetallics in friction stir welding of aluminum alloy to coated steel sheet lap joint. Metal Mater Trans A 45(11):5098–5106. https://doi.org/10.1007/s11661-014-2424-9

    Article  Google Scholar 

  17. Lan SH, Liu X, Ni J (2016) Microstructural evolution during friction stir welding of dissimilar aluminum alloy to advanced high-strength steel. Int J Adv Manuf Technol 82(9-12):2183–2193. https://doi.org/10.1007/s00170-015-7531-2

    Article  Google Scholar 

  18. Yazdipour A, Heidarzadeh A (2016) Dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel alloys. Int J Adv Manuf Technol 87(9-12):3105–3112. https://doi.org/10.1007/s00170-016-8705-2

    Article  Google Scholar 

  19. Li W, Vairis A, Preuss M, Ma TJ (2016) Linear and rotary friction welding review. Int Mater Rev 61(2):71–100. https://doi.org/10.1080/09506608.2015.1109214

    Article  Google Scholar 

  20. Balalan Z, Ozdemir N, Firat EH, Caligulu U (2015) Functional ANOVA investigation of the effects of friction welding parameters on the joint characteristics of aluminum based MMC to AISI 304 stainless steel. Mater Test 57:558–566

    Article  Google Scholar 

  21. Uday MB, Fauzi MNA, Zuhailawati H, Ismail AB (2013) Advances in friction welding process: a review. Sci Technol Weld Join 15:534–558

    Article  Google Scholar 

  22. Yılmaz M, Çöl M, Acet M (2002) Interface properties of aluminum/steel friction-welded components. Mater Charact 49(5):421–429. https://doi.org/10.1016/S1044-5803(03)00051-2

    Article  Google Scholar 

  23. Kawai G, Ogawa K, Ochi H, Tokisue H (2000) Friction weldability of aluminium alloys to carbon steel. Weld Int 14(2):101–107. https://doi.org/10.1080/09507110009549147

    Article  Google Scholar 

  24. Kimura M, Kusaka M, Kaizu K, Nakata K, Nagatsuka K (2015) Friction welding technique and joint properties of thin-walled pipe friction-welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel. Int J Adv Manuf Technol 82:1–11

    Article  Google Scholar 

  25. Lee WB, Yeon YM, Kim DU, Jung SB (2003) Effect of friction welding parameters on mechanical and metallurgical properties of aluminium alloy 5052-A36 steel joint. Mater Sci Technol 19(6):773–778. https://doi.org/10.1179/026708303225001876

    Article  Google Scholar 

  26. Fuji A (2004) Friction welding of Al-Mg-Si alloy to Ni-Cr-Mo low alloy steel. Sci Technol Weld Join 9:83–89

    Article  Google Scholar 

  27. Fukumoto S, Tsubakino H, Okita K, Aritoshi M, Tomita T (2000) Static joint strength of friction welded joint between aluminium alloys and stainless steel. Weld Int 14(2):89–93. https://doi.org/10.1080/09507110009549145

    Article  Google Scholar 

  28. Ikeuchi EK, Makahashi TE, Watanabe MH, Aritoshi M (2009) Effects of carbon content on intermetallic compound layer and joint strength in friction welding of Al alloy to steel. Weld World 53:135–139

    Article  Google Scholar 

  29. Reddy M, Rao S, Mohandas T (2008) Role of electroplated interlayer in continuous drive friction welding of AA6061 to AISI 304 dissimilar metals. Sci Technol Weld Join 13(7):619–628. https://doi.org/10.1179/174329308X319217

    Article  Google Scholar 

  30. Elangovan K, Balasubramanian V (2008) Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Mater Charact 59(9):1168–1177. https://doi.org/10.1016/j.matchar.2007.09.006

    Article  Google Scholar 

  31. Fukumoto S, Tsubakino H, Okita K, Tomita T (2013) Friction welding process of 5052 aluminium alloy to 304 stainless steel. Mater Sci Technol 15:1080–1086

    Article  Google Scholar 

  32. Reda Y, Abdel-Karim R, Elmahallawi I (2008) Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging. Mater Sci Eng A 485(1-2):468–475. https://doi.org/10.1016/j.msea.2007.08.025

    Article  Google Scholar 

Download references

Funding

The work was jointly supported by the National Natural Science Foundation of China (No. 51575132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Huang, Y. Friction welding of AA6061 to AISI 316L steel: characteristic analysis and novel design equipment. Int J Adv Manuf Technol 95, 4117–4128 (2018). https://doi.org/10.1007/s00170-017-1505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1505-5

Keywords

Navigation