Advertisement

Modeling of surface topography based on relationship between feed per tooth and radial depth of cut in ball-end milling of AISI H13 steel

  • Qing Zhang
  • Song Zhang
  • Wenhao Shi
ORIGINAL ARTICLE

Abstract

Machined surface topography and surface roughness are significant factors that directly affect the service performance of the material. A simulation of surface topography in ball-end milling of AISI H13 steel is developed based on the relative motion between cutting tool and workpiece. The developed model was verified by milling experiment and can be used to simulate the machined surface topography accurately. In order to optimize the surface roughness by taking material removal rate (MRR) into account, a simulation trial is conducted by employing the product value (p) and ratio (r) of feed per tooth f z and radial depth of cut a e based on the developed model. The effect of r and p on three dimensional (3D) arithmetic average deviation S ba has been investigated. An optimizing model for S ba with regard to p and r is developed. For a given value of p, which means for constant MRR, the value of r for minimum S ba can be calculated. The validation of the optimizing model was conducted by experiment, and the model was proved to be able to precisely predict S ba within the range of cutting parameters in this research.

Keywords

Surface topography Surface roughness Ball-end milling Product and ratio of feed per tooth and radial depth of cut Material removal rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (grant numbers 51575321 and 51175309), and Taishan Scholars Program of Shandong Province.

References

  1. 1.
    Zhang S, Ding T, Li J (2012) Microstructural alteration and microhardness at near-surface of AISI H13 steel by hard milling. Mach Sci Technol 16(3):473–486.  https://doi.org/10.1080/10910344.2012.699387 CrossRefGoogle Scholar
  2. 2.
    Chen JS, Huang YK, Chen MS (2005) A study of the surface scallop generating mechanism in the ball-end milling process. Int J Mach Tools Manuf 45(9):1077–1084.  https://doi.org/10.1016/j.ijmachtools.2004.11.019 CrossRefGoogle Scholar
  3. 3.
    Buj-Corral I, Vivancos-Calvet J, Domínguez-Fernández A (2012) Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut. Int J Mach Tools Manuf 53(1):151–159.  https://doi.org/10.1016/j.ijmachtools.2011.10.006 CrossRefGoogle Scholar
  4. 4.
    Benardos PG, Vosniakos GC (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43(8):833–844.  https://doi.org/10.1016/S0890-6955(03)00059-2 CrossRefGoogle Scholar
  5. 5.
    Kim BH, Chu CN (1999) Texture prediction of milled surfaces using texture superposition method. Comput Aided Des 31(8):485–494.  https://doi.org/10.1016/S0010-4485(99)00045-7 CrossRefzbMATHGoogle Scholar
  6. 6.
    Denkena B, Böß V, Nespor D, Samp A (2011) Kinematic and stochastic surface topography of machined TiAl6V4-parts by means of ball nose end milling. Procedia Eng 19:81–87.  https://doi.org/10.1016/j.proeng.2011.11.083 CrossRefGoogle Scholar
  7. 7.
    Ding W, Dai C, Yu T, Xu J, Fu Y (2017) Grinding performance of textured monolayer CBN wheels: Undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int J Mach Tools Manuf 122:66–80.  https://doi.org/10.1016/j.ijmachtools.2017.05.006 CrossRefGoogle Scholar
  8. 8.
    Artetxe E, Olvera D, de Lacalle LNL, Campa FJ, Olvera D, Lamikiz A (2017) Solid subtraction model for the surface topography prediction in flank milling of thin-walled integral blade rotors (IBRs). Int J Adv Manuf Technol 90(1–4):741–752.  https://doi.org/10.1007/s00170-016-9435-1 CrossRefGoogle Scholar
  9. 9.
    Lu X, Hu X, Jia Z, Liu M, Gao S, Qu C, Liang SY (2017) Model for the prediction of 3D surface topography and surface roughness in micro-milling Inconel 718. Int J Adv Manuf Technol 2017:1–14Google Scholar
  10. 10.
    Jung TS, Yang MY, Lee KJ (2005) A new approach to analysing machined surfaces by ball-end milling, part I. Int J Adv Manuf Technol 25(9):833–840.  https://doi.org/10.1007/s00170-003-1930-5 CrossRefGoogle Scholar
  11. 11.
    Jung TS, Yang MY, Lee KJ (2005) A new approach to analysing machined surfaces by ball-end milling, part II. Int J Adv Manuf Technol 25(9):841–849.  https://doi.org/10.1007/s00170-003-1931-4 CrossRefGoogle Scholar
  12. 12.
    Quinsat Y, Sabourin L, Lartigue C (2008) Surface topography in ball end milling process: description of a 3D surface roughness parameter. J Mater Process Technol 195(1):135–143.  https://doi.org/10.1016/j.jmatprotec.2007.04.129 CrossRefGoogle Scholar
  13. 13.
    Zhang C, Guo S, Zhang H, Zhou L (2013) Modeling and predicting for surface topography considering tool wear in milling process. Int J Adv Manuf Technol 68(9–12):2849–2860.  https://doi.org/10.1007/s00170-013-4989-7 CrossRefGoogle Scholar
  14. 14.
    Lazoglu I (2017) 3D surface topography analysis in 5-axis ball-end milling. CIRP Ann-Manuf Technol 66:133–136CrossRefGoogle Scholar
  15. 15.
    Buj-Corral I, Vivancos-Calvet J, González-Rojas H (2011) Influence of feed, eccentricity and helix angle on topography obtained in side milling processes. Int J Mach Tools Manuf 51(12):889–897.  https://doi.org/10.1016/j.ijmachtools.2011.08.001 CrossRefGoogle Scholar
  16. 16.
    Ryu SH, Choi DK, Chu CN (2006) Roughness and texture generation on end milled surfaces. Int J Mach Tools Manuf 46(3):404–412.  https://doi.org/10.1016/j.ijmachtools.2005.05.010 CrossRefGoogle Scholar
  17. 17.
    Shajari S, Sadeghi MH, Hassanpour H (2014) The influence of tool path strategies on cutting force and surface texture during ball end milling of low curvature convex surfaces. Sci World J 2014:1–14.  https://doi.org/10.1155/2014/374526 CrossRefGoogle Scholar
  18. 18.
    Mhamdi MB, Boujelbene M, Bayraktar E, Zghal A (2012) Surface integrity of titanium alloy Ti-6Al-4V in ball end milling. Phys Procedia 25:355–362.  https://doi.org/10.1016/j.phpro.2012.03.096 CrossRefGoogle Scholar
  19. 19.
    Chen X, Zhao J, Dong Y (2014) A. Li, D. Wang, Research on the machined surface integrity under combination of various inclination angles in multi-axis ball end milling, Proc Inst Mech Eng B J Eng Manuf 228(1):31–50, DOI:  https://doi.org/10.1177/0954405413496095 CrossRefGoogle Scholar
  20. 20.
    Lavernhe S, Quinsat Y, Lartigue C (2010) Model for the prediction of 3D surface topography in 5-axis milling. Int J Adv Manuf Technol 51(9):915–924.  https://doi.org/10.1007/s00170-010-2686-3 CrossRefGoogle Scholar
  21. 21.
    Chen X, Zhao J, Zhang W (2015) Influence of milling modes and tool postures on the milled surface for multi-axis finish ball-end milling. Int J Adv Manuf Technol 77(9–12):2035–2050.  https://doi.org/10.1007/s00170-014-6547-3 CrossRefGoogle Scholar
  22. 22.
    Zhang S, Guo Y (2009) Taguchi method based process space for optimal surface topography by finish hard milling. J Manuf Sci Eng 131(5):051003.  https://doi.org/10.1115/1.3207740 CrossRefGoogle Scholar
  23. 23.
    Yang D, Liu Z (2015) Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti–6Al–4V. Int J Refract Met Hard Mater 51:192–200.  https://doi.org/10.1016/j.ijrmhm.2015.04.001 CrossRefGoogle Scholar
  24. 24.
    Tangjitsitcharoen S, Thesniyom P, Ratanakuakangwan S (2017) Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio. J Intell Manuf 28(1):13–21.  https://doi.org/10.1007/s10845-014-0958-8 CrossRefGoogle Scholar
  25. 25.
    Chen JSB, Huang YK, Chen MS (2005) Feedrate optimization and tool profile modification for the high-efficiency ball-end milling process. Int J Mach Tools Manuf 45(9):1070–1076.  https://doi.org/10.1016/j.ijmachtools.2004.11.020 CrossRefGoogle Scholar
  26. 26.
    Chen X, Zhao J, Zhang W (2017) Process optimization and typical application based on geometrical analysis and response surface method for high-speed five-axis ball-end milling operation. Int J Adv Manuf Technol 89(5-8):1509–1527.  https://doi.org/10.1007/s00170-016-9143-x CrossRefGoogle Scholar
  27. 27.
    Kuram E, Ozcelik B (2013) Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement 46(6):1849–1864.  https://doi.org/10.1016/j.measurement.2013.02.002 CrossRefGoogle Scholar
  28. 28.
    Thepsonthi T, Özel T (2012) Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 63(9–12):903–914.  https://doi.org/10.1007/s00170-012-3980-z CrossRefGoogle Scholar
  29. 29.
    Zhou J, Ren J, Yao C (2017) Multi-objective optimization of multi-axis ball-end milling Inconel 718 via grey relational analysis coupled with RBF neural network and PSO algorithm. Measurement 102:271–285.  https://doi.org/10.1016/j.measurement.2017.01.057 CrossRefGoogle Scholar
  30. 30.
    Svalina I, Šimunović G, Šarić T, Lujić R (2017) Evolutionary neuro-fuzzy system for surface roughness evaluation. Appl Soft Comput 52:593–604.  https://doi.org/10.1016/j.asoc.2016.10.010 CrossRefGoogle Scholar
  31. 31.
    Budak E, Tekeli A (2005) Maximizing chatter free material removal rate in milling through optimal selection of axial and radial depth of cut pairs. CIRP Ann-Manuf Technol 54(1):353–356CrossRefGoogle Scholar
  32. 32.
    Wang P, Zhang S, Li Z, Li J (2016) Tool path planning and milling surface simulation for vehicle rear bumper mold. Adv Mech Eng 8(3):1–10Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShandong UniversityJinanChina
  2. 2.Key Laboratory of High-efficiency and Clean Mechanical Manufacture, Ministry of EducationShandong UniversityJinanChina

Personalised recommendations