Path planning method for intelligent CMMs based on safety and the high-efficiency principle

  • Zhenhua Han
  • Shugui Liu
  • Xinghua Li
  • Yingmo Wang
  • Xiaodong Zhang
  • Guoxiong Zhang


To improve the intelligence and efficiency of a coordinate measuring machine (CMM) for large parts, it is necessary to plan the three-dimensional detection path. In this paper, a new path planning model is proposed for the workpiece and distribution. Furthermore, to avoid collision, a spherical model is proposed to calculate the direction of the probe when touching a hidden point. Finally, the path planning method with time as the optimization target is proposed based on the ant colony algorithm (ACO). Experiments show that the method of calculating the detection direction can automatically plan the safe contact angle for certain hidden points and can greatly improve the intelligence of CMMs. The new path planning algorithm can save detection time and safely improve efficiency.


CMM Intelligent Efficiency Detection direction Path planning Ant colony algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their sincere thanks to the supports of the Natural Science Foundation of China (No. 51320105009) and the Natural Science Foundation of Tianjin (No. 13JCZDJC34500).


  1. 1.
    Hwang YC, Tsai YC, Chang AC (2004) Efficient inspection planning for coordinate measuring machines. Int J Adv Manuf Technol 23(9-10):732–742. CrossRefGoogle Scholar
  2. 2.
    Zhang GX, Liu SG, Ma XH, Wang JL, Wu YQ, Li Z (2002) Towards the intelligent CMM. CIRP Ann Manuf Technol 51(1):437–442. CrossRefGoogle Scholar
  3. 3.
    Li XQ, Wang Z, Fu LH (2016) A laser-based measuring system for online quality control of car engine block. Sensors 16(11):1877. CrossRefGoogle Scholar
  4. 4.
    Zhu JG, Wang Z, Zhou FQ, Wu B, Ye SH (2000) Study of field traceability of visual inspection system of IVECO-body. Acta Metrologica Sinica 21(1):28–33Google Scholar
  5. 5.
    Stojadinovic SM, Majstorovic VD, Durakbasa NM et al (2016) Ants colony optimisation of a measuring path of prismatic parts on a CMM. Metrol Meas Syst 23(1/2016):119–132Google Scholar
  6. 6.
    Schmitt R, Zheng H, Zhao X, et al. (2009). Application of ant colony optimization to inspection planning. 71–75Google Scholar
  7. 7.
    Lu CG, Morton D, Wu MH, Myler P (1999) Genetic algorithm modelling and solution of inspection path planning on a coordinate measuring machine (CMM). Int J Adv Manuf Technol 15(6):409–416. CrossRefGoogle Scholar
  8. 8.
    Qu L, Xu G, Wang G (1998) Optimization of the measuring path on a coordinate measuring machine using genetic algorithms. Measurement 23(3):159–170. CrossRefGoogle Scholar
  9. 9.
    Cho MW, Lee H, Yoon GS, Choi J (2005) A feature-based inspection planning system for coordinate measuring machines. Int J Adv Manuf Technol 26(9):1078–1087. CrossRefGoogle Scholar
  10. 10.
    Bai Y, Wei S, Liu K et al (2010) A strategy to automatically planning measuring path with CMM offline. Mechanic Automation and Control Engineering (MACE), International Conference on. IEEE 2010:3064–3067Google Scholar
  11. 11.
    Yau HT, Menq CH (1995) Automated CMM path planning for dimensional inspection of dies and molds having complex surfaces. Int J Mach Tool Manu 35(6):861–876. CrossRefGoogle Scholar
  12. 12.
    Zhou Z, Zhang Y, Tang K (2016) Sweep scan path planning for efficient freeform surface inspection on five-axis CMM. Comput Aided Des 77:1–17. CrossRefGoogle Scholar
  13. 13.
    Albuquerque VA, Liou FW, Mitchell OR (2000) Inspection point placement and path planning algorithms for automatic CMM inspection. Int J Comput Integr Manuf 13(2):107–120. CrossRefGoogle Scholar
  14. 14.
    Dorigo M, Gambardella LM (1997) Ant colonies for the travelling salesman problem. Bio System 43(2):73–81.
  15. 15.
    Marco Dorigo, Mauro Birattari (2004). Ant colony optimization. Bradford CompanyGoogle Scholar
  16. 16.
    Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2(4):353–373.
  17. 17.
    Dorigo M, Stützle T. (2004). Ant colony optimization theory // MIT Press,118–129Google Scholar
  18. 18.
    Tan J, Wang C, Wang Y, et al. (2015). Three-dimensional path planning based on ant colony algorithm with potential field for rotary-wing flying robot. // IEEE International Conference on Information and Automation IEEEGoogle Scholar
  19. 19.
    Khatib O. (1985). Real-time obstacle avoidance for manipulators and mobile robots // IEEE International Conference on Robotics and Automation. Proceedings. IEEE,90–98Google Scholar
  20. 20.
    Gemeinder M, Gerke M (2003) GA-based path planning for mobile robot systems employing an active search algorithm. Appl Soft Comput 3(03):149–158. CrossRefGoogle Scholar
  21. 21.
    Ho D T, Grotli E I, Sujit P B, et al. (2013). Performance evaluation of cooperative relay and particle swarm optimization path planning for UAV and wireless sensor network // Globecom workshops (GC Wkshps), IEEE:1403–1408Google Scholar
  22. 22.
    Liu J, Yang J, Liu H, et al. (2016). An improved ant colony algorithm for robot path planning. Soft Comput,1–11Google Scholar
  23. 23.
    Luo DL, Shun-Xiang WU (2010) Ant colony optimization with potential field heuristic for robot path planning. XI Tong Gong Cheng Yu Dian ZiJiShu/systems Eng Electron 32(6):1277–1280Google Scholar
  24. 24.
    Zhao J, Xiuhui F (2012) Improved ant colony optimization algorithm and its application on path planning of mobile robot. Journal Comput 7(8):2055–2061Google Scholar
  25. 25.
    Cao J (2016) Research of ant colony algorithm for mobile robot path planning. J Computer\s \scommunications 04(2):11–19Google Scholar
  26. 26.
    Surekha P, Mohanaraajan P R A, Sumathi S. (2010). Ant colony optimization for solving combinatorial fuzzy Job Shop Scheduling Problems. // Communication and Computational Intelligence (INCOCCI), 2010 International Conference onIEEE, 295–300Google Scholar
  27. 27.
    Sun Y, Hua-Dong MA, Liu L (2007) An ant-colony optimization based service aware routing algorithm for multimedia sensor networks. Acta Electron Sin 35(4):705–711Google Scholar
  28. 28.
    Bullnheimer B, Hartl R F, Strauss C. (1999). Applying the ANT system to the vehicle routing problem. //Meta-Heuristics Springer US, 285–296Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Zhenhua Han
    • 1
  • Shugui Liu
    • 1
  • Xinghua Li
    • 1
  • Yingmo Wang
    • 1
  • Xiaodong Zhang
    • 1
  • Guoxiong Zhang
    • 1
  1. 1.State Key Laboratory of Precision Measuring Technology and InstrumentsTianjin UniversityTianjinChina

Personalised recommendations