An analytical transient cutting force model of high-speed ultrasonic vibration cutting

  • Xiangyu Zhang
  • He Sui
  • Deyuan Zhang
  • Xinggang Jiang
ORIGINAL ARTICLE
  • 116 Downloads

Abstract

In the present study, an analytical transient cutting force model for high-speed ultrasonic vibration cutting has been developed. Micro-machining characteristics are figured out when both the tool nose round and round cutting edge are taken into consideration in the cutting mechanism. Four cutting zones (i.e., elastic recovery, plowing, shearing, and tool-chip friction) are proposed and analyzed to calculate the transient cutting force on each divided cross section in the normal direction of the cutting tool along the cutting edge. A non-free cutting coefficient is added to evaluate the influence of the tool shape on the cutting force compared to the orthogonal cutting model. Afterwards, transient cutting force and average cutting force are simultaneously measured. The results show that the shape and value of the transient cutting force correspond well with what was calculated using the proposed model, and the availability of the proposed model is verified by the cutting force shapes and values.

Keywords

Cutting force Ultrasonic vibration cutting Tool nose Round cutting edge Micro-machining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sui H, Zhang X, Zhang D, Jiang X, Wu R (2017) Feasibility study of high-speed ultrasonic vibration cutting titanium alloy. J Mater Process Technol 247:111–120.  https://doi.org/10.1016/j.jmatprotec.2017.03.017 CrossRefGoogle Scholar
  2. 2.
    Jiang X, Zhang X, Zhu X, Sui H, Zhang D. (2018) Study of phase shift control in high-speed ultrasonic vibration cutting. IEEE T Ind Electron 65(3):2467–2474.  https://doi.org/10.1109/TIE.2017.2740827.CrossRefGoogle Scholar
  3. 3.
    Dorlin T, Fromentin G, Costes J (2016) Generalised cutting force model including contact radius effect for turning operations on Ti6Al4V titanium alloy. Int J Adv Manuf Technol 86(9-12):3297–3313.  https://doi.org/10.1007/s00170-016-8422-x CrossRefGoogle Scholar
  4. 4.
    Ahn IH, Moon SK, Hwang J (2015) A mechanistic cutting force model with consideration of the intrinsic and geometric size effects decoupled. Int J Adv Manuf Technol 81(5-8):745–753.  https://doi.org/10.1007/s00170-015-7227-7 CrossRefGoogle Scholar
  5. 5.
    Jeong-Du K, Kim DS (1995) Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J Mater Process Technol 49(3-4):387–398.  https://doi.org/10.1016/0924-0136(94)01345-2 CrossRefGoogle Scholar
  6. 6.
    Biró I, Szalay T (2017) Extension of empirical specific cutting force model for the process of fine chip-removing milling. Int J Adv Manuf Technol 88(9-12):2735–2743.  https://doi.org/10.1007/s00170-016-8957-x CrossRefGoogle Scholar
  7. 7.
    Ma J, Jia Z, Wang F, Gao Y, Liu Z (2016) A new cutting force modeling method in high-speed milling of curved surface with difficult-to-machine material. Int J Adv Manuf Technol 84(9-12):2195–2205.  https://doi.org/10.1007/s00170-015-7856-x CrossRefGoogle Scholar
  8. 8.
    Guo M, Li B, Ding Z, Liang SY (2016) Empirical modeling of dynamic grinding force based on process analysis. Int J Adv Manuf Technol 86(9-12):3395–3405.  https://doi.org/10.1007/s00170-016-8465-z CrossRefGoogle Scholar
  9. 9.
    Crichigno Filho JM (2017) Applying extended Oxley’s machining theory and particle swarm optimization to model machining forces. Int J Adv Manuf Technol 89(1-4):1127–1136.  https://doi.org/10.1007/s00170-016-9155-6 CrossRefGoogle Scholar
  10. 10.
    Zhang X, Senthil Kumar A, Rahman M, Nath C, Liu K (2012) An analytical force model for orthogonal elliptical vibration cutting technique. J Manuf Process 14(3):378–387.  https://doi.org/10.1016/j.jmapro.2012.05.006 CrossRefGoogle Scholar
  11. 11.
    Bai W, Sun R, Gao Y, Leopold J (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Technol 83(5-8):1025–1036.  https://doi.org/10.1007/s00170-015-7645-6 CrossRefGoogle Scholar
  12. 12.
    Nategh MJ, Razavi H, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning. Part I: kinematics analysis. Int J Mech Sci 63(1):1–11.  https://doi.org/10.1016/j.ijmecsci.2012.04.007. CrossRefGoogle Scholar
  13. 13.
    Razavi H, Nategh MJ, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning. Part II: dynamics analysis. Int J Mech Sci 63(1):12–25.  https://doi.org/10.1016/j.ijmecsci.2012.05.005 CrossRefGoogle Scholar
  14. 14.
    Grossi N (2017) Accurate and fast measurement of specific cutting force coefficients changing with spindle speed. Int J Precis Eng Manuf 18(8):1173–1180.  https://doi.org/10.1007/s12541-017-0137-x CrossRefGoogle Scholar
  15. 15.
    Korkmaz E, Gozen BA, Bediz B, Ozdoganlar OB (2017) Accurate measurement of micromachining forces through dynamic compensation of dynamometers. Precis Eng 49:365–376.  https://doi.org/10.1016/j.precisioneng.2017.03.006 CrossRefGoogle Scholar
  16. 16.
    Jin X, Qin T, Zhang Z, Li D (2017) Development and evaluation of a three-component micro-cutting force wireless measurement apparatus and method in turning-milling compound machining. Int J Adv Manuf Technol 89(5-8):1367–1378.  https://doi.org/10.1007/s00170-016-9184-1 CrossRefGoogle Scholar
  17. 17.
    Liang Q, Zhang D, Wu W, Zou K (2016) Methods and research for multi-component cutting force sensing devices and approaches in machining. Sensors 16(11):1926.  https://doi.org/10.3390/s16111926 CrossRefGoogle Scholar
  18. 18.
    Khajehzadeh M, Razfar MR (2015) FEM and experimental investigation of cutting force during UAT using multicoated inserts. Mater Manuf Process 30(7):858–867.  https://doi.org/10.1080/10426914.2014.973590 CrossRefGoogle Scholar
  19. 19.
    Storch B, Zawada-Tomkiewicz A (2012) Distribution of unit forces on the tool nose rounding in the case of constrained turning. Int J Mach Tools Manuf 57:1–9.  https://doi.org/10.1016/j.ijmachtools.2012.01.011 CrossRefGoogle Scholar
  20. 20.
    Xu W, Zhang L (2015) Ultrasonic vibration-assisted machining: principle, design and application. Adv Manuf 3(3):173–192.  https://doi.org/10.1007/s40436-015-0115-4 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu Z, Wang X, Fang Z (2010) Modeling and prediction of non-free-cutting parameters on micro-cutting with rounded-edge tool. T Chin Soc Agr Machinery 41(3):204–208.  https://doi.org/10.3969/j.issn.1000-1298.2010.03.042 Google Scholar
  22. 22.
    Shi T (2011) Micro machining technology. China Machine Press, Beijing, pp 45–54Google Scholar
  23. 23.
    Son SM, Lim HS, Ahn JH (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45(4-5):529–535.  https://doi.org/10.1016/j.ijmachtools.2004.09.001 CrossRefGoogle Scholar
  24. 24.
    Oxley LB, Hastings WF (1976) Minimum work as a possible criterion for determining the frictional conditions at the tool/chip interface in machining. Phil Trans R Soc Lond A 282(1310):565–584.  https://doi.org/10.1098/rsta.1976.0064 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationBeihang UniversityBeijingChina

Personalised recommendations