Advertisement

Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding

  • S. Shanavas
  • J. Edwin Raja Dhas
  • N. Murugan
ORIGINAL ARTICLE

Abstract

Friction stir welding (FSW) is a solid-state joining process producing high-quality welds with lower residual stresses and improved mechanical properties. Underwater FSW is a variant of FSW process which controls heat conduction and dissipation along the weld line improving the joint properties. The feasibility of underwater friction stir welding of AA 5052 H32 aluminum alloy to improve the joint performance than normal friction stir welding is addressed in this paper. The effects of tool rotational speed and welding speed on ultimate tensile strength by underwater and normal friction stir welding were analyzed and compared. It was observed that the tensile strength of underwater welded joints was higher than normal FSW joints except at 500 rpm. Maximum tensile strength of 208.9 MPa was obtained by underwater friction stir welding at 700 rpm tool rotational speed and welding speed of 65 mm/min. The optimum process parameters for achieving maximum tensile strength by normal FSW were compared with underwater FSW. The result showed that the ultimate tensile strength obtained by underwater FSW was about 2% greater than that of the normal FSW process. The joints with maximum tensile strength during underwater and normal welding fractured at the retreating side of the welded joint. Microstructural examination revealed that heat-affected region was not found in underwater welding. Microhardness was decreased slightly towards the stir zone. Fractography observation revealed that the welded joints exhibiting higher joint efficiency failed under ductile mode.

Keywords

Aluminum alloy Underwater friction stir welding Tensile strength Hardness Fractography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the Department of Mechanical Engineering, Coimbatore Institute of Technology, India, for extending the facilities to carry out the investigations.

References

  1. 1.
    Chen J, Yuan X, Hu Z, Sun C, Zhang Y, Zhang Y (2016) Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel. Mater Charact 120:45–52.  https://doi.org/10.1016/j.matchar.2016.08.015 CrossRefGoogle Scholar
  2. 2.
    Zhang R, Knight SP, Holtz RL, Goswami R, Davies CHJ, Birbilis N (2016) A survey of sensitization in 5xxx series aluminum alloys. Corros Sci 72(2):144–159.  https://doi.org/10.5006/1787 CrossRefGoogle Scholar
  3. 3.
    Zhitong Chen, Shengxi Li, Kaimiao Liu, Lloyd H. Hihara arXiv:1511.04990 (2015) A study on the mechanical property and corrosion sensitivity of an AA5086 friction stir welded joint. arXiv e-print (arXiv:1511.04990)
  4. 4.
    Mishra RS, Ma ZY (2005) Friction sir welding and processing. Material Sci Engineering R 50(1-2):1–78.  https://doi.org/10.1016/j.mser.2005.07.001 CrossRefGoogle Scholar
  5. 5.
    Grimm A, Schulze S, Silva A, Gobel G, Standfuss J, Brenner B, Beyer E, Fussel U (2015) Friction stir welding of light metals for industrial applications. Materials Today: Proceedings 2S:169–178.  https://doi.org/10.1016/j.matpr.2015.05.007
  6. 6.
    Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Stauss AM (2014) Friction stir welding: process, automation, and control. J Manufacturing Process 16(1):56–73.  https://doi.org/10.1016/j.jmapro.2013.04.002 CrossRefGoogle Scholar
  7. 7.
    Saravanan V, Rajakumar S, Banerjee N, Amuthakkannan R (2016) Effect of shoulder diameter to pin diameter ratio on microstructure and mechanical properties of dissimilar friction stir welded AA2024-T6 and AA7075-T6 aluminum alloy joints. Int J Adv Manuf Technol 87(9-12):3637–3645.  https://doi.org/10.1007/s00170-016-8695-0 CrossRefGoogle Scholar
  8. 8.
    Elangovan K, Balasubramanian V (2008) Influence of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J Mater Process Technol 200(1-3):163–175.  https://doi.org/10.1016/j.jmatprotec.2007.09.019 CrossRefGoogle Scholar
  9. 9.
    Ugender S, Kumar A, Somi Reddy A (2014) Experimental investigation of tool geometry on mechanical properties of friction stir welding of AA 2014 aluminium alloy. Procedia Materials Sci 5:824–831.  https://doi.org/10.1016/j.mspro.2014.07.334 CrossRefGoogle Scholar
  10. 10.
    Bayazid SM, Farhangi GA (2015) Effect of pin profile on defects of friction stir welded 7075 aluminum alloy. Procedia Materials Sci 11:12–16.  https://doi.org/10.1016/j.mspro.2015.11.013 CrossRefGoogle Scholar
  11. 11.
    Yue Y, Zhou Z, Ji S, Zhang J, Li Z (2017) Effect of welding speed on joint feature and mechanical properties of friction stir lap welding assisted by external stationary shoulders. Int J Adv Manuf Technol 89(5-8):1691–1698.  https://doi.org/10.1007/s00170-016-9240-x CrossRefGoogle Scholar
  12. 12.
    Gadakh VS, Adepu K (2013) Heat generation model for taper cylindrical pin profile in FSW. J Materials Res Technol 2(4):370–375.  https://doi.org/10.1016/j.jmrt.2013.10.003 CrossRefGoogle Scholar
  13. 13.
    Liu H, Zhao Y, Hu Y, Chen S, Lin Z (2015) Microstructural characteristics and mechanical properties of friction stir lap welding joint of alclad 7B04-T74 aluminum alloy. Int J Adv Manuf Technol 78(9-12):1415–1425.  https://doi.org/10.1007/s00170-014-6718-2 CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Wu Q (2015) Analytical and numerical studies of fatigue stresses in friction stir welding. Int J Adv Manuf Technol 78(9-12):1371–1380.  https://doi.org/10.1007/s00170-014-6749-8 CrossRefGoogle Scholar
  15. 15.
    Amini S, Amiri MR (2015) Pin axis effects on forces in friction stir welding process. Int J Adv Manuf Technol 78(9-12):1795–1801.  https://doi.org/10.1007/s00170-015-6785-z CrossRefGoogle Scholar
  16. 16.
    Rajakumar S, Balasubramanian V (2012) Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Mater Des 40:17–35.  https://doi.org/10.1016/j.matdes.2012.02.054 CrossRefGoogle Scholar
  17. 17.
    Venkateswarlu D, Mandal NR, Mahapatra MM, Harsh SP (2013) Tool design effects for FSW of AA7039. Weld J 92:41–47Google Scholar
  18. 18.
    Elatharasan G, Senthil Kumar VS (2013) An experimental analysis and optimization of process parameter on friction stir welding of AA 6061-T6 aluminium alloy using RSM. Procedia Engineering 64:1227–1234.  https://doi.org/10.1016/j.proeng.2013.09.202 CrossRefGoogle Scholar
  19. 19.
    Kadaganch R, Gankidi MR, Gokhale H (2015) Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology. Defence Technol 11(3):209–219.  https://doi.org/10.1016/j.dt.2015.03.003 CrossRefGoogle Scholar
  20. 20.
    Lakshminarayanan AK, Balasubramanian V (2009) Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Trans Nonferrous Metals Soc China 19(1):9–18.  https://doi.org/10.1016/S1003-6326(08)60221-6 CrossRefGoogle Scholar
  21. 21.
    Jayaraman M, Sivasubramanian R, Balasubramanian V, Lakshminarayanan AK (2009) Application of RSM and ANN to predict the tensile strength of friction stir welded A319 cast aluminum alloy. Int J Manuf Res 4(3):306–323.  https://doi.org/10.1504/IJMR.2009.026576 CrossRefGoogle Scholar
  22. 22.
    Palanivel R, Laubscher RF, Dinaharan I, Murugan N (2016) Tensile strength prediction of dissimilar friction stir-welded AA6351–AA5083 using artificial neural network technique. J Braz Soc Mech Sci Eng 38(6):1647–1657.  https://doi.org/10.1007/s40430-015-0483-5 CrossRefGoogle Scholar
  23. 23.
    Ghetiya ND, Patel KM (2014) Prediction of tensile strength in friction stir welded aluminium alloy using artificial neural network. Procedia Technol 14:274–281.  https://doi.org/10.1016/j.protcy.2014.08.036 CrossRefGoogle Scholar
  24. 24.
    Okuyucu H, Kurt A, Arcaklioglu E (2007) Artificial neural network application to the friction stir welding of aluminum plates. Mater Des 28(1):78–84.  https://doi.org/10.1016/j.matdes.2005.06.003 CrossRefGoogle Scholar
  25. 25.
    Moshwan R, Yusof F, Hassan MA, Rahmat SM (2015) Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded AA 5052-O alloy. Mater Des 66:118–128.  https://doi.org/10.1016/j.matdes.2014.10.043 CrossRefGoogle Scholar
  26. 26.
    Kwon Y-J, Shim S-B, Park D-H (2009) Friction stir welding of 5052 aluminum alloy plates. Trans Nonferrous Metals Soc China 19:23–27.  https://doi.org/10.1016/S1003-6326(10)60239-7
  27. 27.
    Ramachandran KK, Murugan N, Shashi kumar S (2015) Friction stir welding of aluminum alloy AA5052 and HSLA steel. Weld J 94:291–300Google Scholar
  28. 28.
    Shanavas S, Edwin Raja Dhas J (2017) Modeling and analysis of friction stir welding and underwater friction stir welding of aluminium alloy: a review. Appl Mech Mater 867:127–133.  https://doi.org/10.4028/www.scientific.net/AMM.867.127 CrossRefGoogle Scholar
  29. 29.
    Sarukada D, Katoh K, Tokisue H (2002) Underwater friction welding of 6061 aluminum alloy. J Japan Institute Light Metals 52:2–6.  https://doi.org/10.2464/jilm.52.2
  30. 30.
    Sabari Sree S, Malarvizhi S, Balasubramanian V, Madusudahan Reddy G (2016) Experimental and numerical investigation on under-water friction stir welding of armour grade AA2519-T87 aluminium alloy. Defence Technol 12(4):324–333.  https://doi.org/10.1016/j.dt.2016.02.003 CrossRefGoogle Scholar
  31. 31.
    Wang Q, Zhao Z, Zhao Y, Yan K, Liu C, Zhang H (2016) The strengthening mechanism of spray forming Al-Zn-Mg-Cu alloy by underwater friction stir welding. Mater Des 102:91–99.  https://doi.org/10.1016/j.matdes.2016.04.036
  32. 32.
    Heirani F, Abbasi A, Ardestani M (2017) Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy. J Manuf Process 25:77–84.  https://doi.org/10.1016/j.jmapro.2016.11.002 CrossRefGoogle Scholar
  33. 33.
    Chen H, Zhao Y, Wang Q, Yan K (2014) Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding. Mater Des 56:725–730.  https://doi.org/10.1016/j.matdes.2013.11.071
  34. 34.
    Zhang H, Liu H (2013) Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy. Mater Des 45:206–211.  https://doi.org/10.1016/j.matdes.2012.09.022 CrossRefGoogle Scholar
  35. 35.
    Zhang HJ, Liu HJ, Yu L (2011) Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints. Mater Des 32(8-9):4402–4407.  https://doi.org/10.1016/j.matdes.2011.03.073 CrossRefGoogle Scholar
  36. 36.
    Liu HJ, Zhang HJ, Yu L (2011) Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy. Mater Des 32(3):1548–1553.  https://doi.org/10.1016/j.matdes.2010.09.032 CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Lu Z, Yan K, Huang L (2015) Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Mater Des 65:675–681.  https://doi.org/10.1016/j.matdes.2014.09.046 CrossRefGoogle Scholar
  38. 38.
    Ramachandran KK, Murugan N, Shashi Kumar S (2015) Study on dissimilar butt joining of aluminum alloy, AA5052 and high strength low alloy steel through a modified FSW process. Mater Sci Forum 830:278–281.  https://doi.org/10.4028/www.scientific.net/MSF.830-831.278
  39. 39.
    Sree Sabari S, Malarvizhi S, Balasubramanian V (2016) Characteristics of FSW and UWFSW joints of AA2519-T87 aluminium alloy: effect of tool rotation speed. J Manuf Process 22:278–289.  https://doi.org/10.1016/j.jmapro.2016.03.014 CrossRefGoogle Scholar
  40. 40.
    Zhao Y, Jiang S, Yang S, Lu Z, Yan K (2016) Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding. Int J Adv Manuf Technol 83(1-4):673–679.  https://doi.org/10.1007/s00170-015-7624-y CrossRefGoogle Scholar
  41. 41.
    Wang BB, Chen FF, Liu F, Wang WG, Xue P, Ma ZY (2017) Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling. Journal of Materials Science & Technology 33:1009-1014.  https://doi.org/10.1016/j.jmst.2017.01.016
  42. 42.
    Sree Sabari S, Malarvizhi S, Balasubramanian V (2016) Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints. J Mater Process Technol 237:286–300.  https://doi.org/10.1016/j.jmatprotec.2016.06.015 CrossRefGoogle Scholar
  43. 43.
    Zhang H-j, Liu H-j, Yu L (2013) Thermal modeling of underwater friction stir welding of high strength aluminum alloy. Trans Nonferrous Metals Soc China 23(4):1114–1122.  https://doi.org/10.1016/S1003-6326(13)62573-X CrossRefGoogle Scholar
  44. 44.
    Zhang J, Shen Y, Yao X, Xu H, Li B (2014) Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper. Mater Des 64:74–80.  https://doi.org/10.1016/j.matdes.2014.07.036 CrossRefGoogle Scholar
  45. 45.
    Mofid MA, Abdollah-zadeh A, Malek Ghaini F (2012) The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy. Mater Des 36:161–167.  https://doi.org/10.1016/j.matdes.2011.11.004 CrossRefGoogle Scholar
  46. 46.
    Hui-jie L, Hui-jie Z, Huang Y-x, Lei YU (2010) Mechanical properties of underwater friction stir welded 2219 aluminum alloy. Trans Nonferrous Metals Soc China 20:1387–1391.  https://doi.org/10.1016/S1003-6326(09)60309-5
  47. 47.
    Rai R, De A, Bhadeshia GKDH, Debroy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16(4):325–342.  https://doi.org/10.1179/1362171811Y.0000000023 CrossRefGoogle Scholar
  48. 48.
    Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Canadian Metallurgical Quarterly 51(3):250-261.  https://doi.org/10.1179/1879139512Y.0000000015
  49. 49.
    Shanavas S, Edwin Raja Dhas J (2017) Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology. Transactions of Nonferrous Metals of China 27:2334-2344.  https://doi.org/10.1016/S1003-6326(17)60259-0
  50. 50.
    ASTM E8/E8M-09 (2010) Standard test methods for tension testing of metallic materials, ASTM InternationalGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNIUKumaracoilIndia
  2. 2.Department of Automobile EngineeringNIUKumaracoilIndia
  3. 3.Department of Robotics and Automation Engineering, PSGCTCoimbatoreIndia

Personalised recommendations