An optimization model for cyclic scheduling problem in flexible robotic cells

  • Mazyar Ghadiri Nejad
  • Gergely Kovács
  • Béla Vizvári
  • Reza Vatankhah Barenji
ORIGINAL ARTICLE

Abstract

This study deals with scheduling problem of a flexible robotic cell with m-machines and a robot. The machines are identical, and each machine performs all of the processes for producing a finished product. These machines are arranged in a line where one input buffer and one buffer are put at the beginning and the end of the line, respectively. A robot transports parts between the machines and the input and output buffers. In this cell, each machine processes one part in each cycle. Since the cycle time depends on the order of the activities of the robot, for minimizing the cycle time, the order of the activities of the robot should be determined. A universal scheduling model of the problem is developed, and its reduced version is provided, excluding waiting time variables. Furthermore, a new model is proposed for maximizing the minimum robot return time to the machines in a cycle. The developed models numerically examined based on obtained products order from the reduced model for the cell with up to six machines. Moreover, the assignment problem method is used for determining lower bond results of the developed model and/or the optimal results (i.e., in case the operation times of the machines are small enough and the robot waiting time is zero). The results indicate that the reduced version of the model is significantly more efficient compared to the model of the literature.

Keywords

Flexible robotic cell CNC machines Robotic cell Cyclic scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gultekin H, Dalgıç ÖO, Akturk MS (2017) Pure cycles in two-machine dual-gripper robotic cells. Robot Comput Integr Manuf 48:121–131.  https://doi.org/10.1016/j.rcim.2017.03.004 CrossRefGoogle Scholar
  2. 2.
    Crama Y (1997) Combinatorial optimization models for production scheduling in automated manufacturing systems. Eur J Oper Res 99(1):136–153.  https://doi.org/10.1016/S0377-2217(96)00388-8 CrossRefMATHGoogle Scholar
  3. 3.
    Agnetis A, Pacciarelli D, Rossi F (1996) Lot scheduling in a two-machine cell with swapping devices. IIE Trans (Inst Ind Eng) 28(11):911–917Google Scholar
  4. 4.
    Drobouchevitch IG, Sethi SP, Sriskandarajah C (2006) Scheduling dual gripper robotic cell: one-unit cycles. Eur J Oper Res 171(2):598–631.  https://doi.org/10.1016/j.ejor.2004.09.019 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dawande M, Geismar HN, Sethi SP, Sriskandarajah C (2005) Sequencing and scheduling in robotic cells: recent developments. J Sched 8(5):387–426.  https://doi.org/10.1007/s10951-005-2861-9 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Sethi SP, Sriskandarajah C, Sorger G, Blazewicz J, Kubiak W (1992) Sequencing of parts and robot moves in a robotic cell. Int J Flex Manuf Syst 4(3–4):331–358.  https://doi.org/10.1007/BF01324886 CrossRefGoogle Scholar
  7. 7.
    Papakostas N, Michalos G, Makris S, Zouzias D, Chryssolouris G (2011) Industrial applications with cooperating robots for the flexible assembly. Int J Comput Integr Manuf 24(7):650–660.  https://doi.org/10.1080/0951192X.2011.570790 CrossRefGoogle Scholar
  8. 8.
    Gultekin H, Akturk MS, Ekin Karasan O (2007) Scheduling in a three-machine robotic flexible manufacturing cell. Comput Oper Res 34(8):2463–2477.  https://doi.org/10.1016/j.cor.2005.09.015 CrossRefMATHGoogle Scholar
  9. 9.
    Gultekin H, Ekin Karasan O, Akturk MS (2009) Pure cycles in flexible robotic cells. Comput Oper Res 36(2):329–343.  https://doi.org/10.1016/j.cor.2007.10.007 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Aktürk MSM, Atamtürk A, Gürel SN (2009) A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Oper Res Lett 37(3):187–191.  https://doi.org/10.1016/j.orl.2008.12.009 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zeballos LJ (2010) A constraint programming approach to tool allocation and production scheduling in flexible manufacturing systems. Robot Comput Integr Manuf 26(6):725–743.  https://doi.org/10.1016/j.rcim.2010.04.005 CrossRefGoogle Scholar
  12. 12.
    Jolai F, Foumani M, Tavakoli-Moghadam R, Fattahi P (2012) Cyclic scheduling of a robotic flexible cell with load lock and swap. J Intell Manuf 23(5):1885–1891.  https://doi.org/10.1007/s10845-011-0505-9 CrossRefGoogle Scholar
  13. 13.
    De Giovanni L, Pezzella F (2010) An improved genetic algorithm for the distributed and flexible job-shop scheduling problem. Eur J Oper Res 200(2):395–408.  https://doi.org/10.1016/j.ejor.2009.01.008 CrossRefMATHGoogle Scholar
  14. 14.
    Batur GD, Karasan OE, Akturk MS (2012) Multiple part-type scheduling in flexible robotic cells. Int J Prod Econ 135(2):726–740.  https://doi.org/10.1016/j.ijpe.2011.10.006 CrossRefGoogle Scholar
  15. 15.
    Musharavati F, Hamouda AMS (2015) Multiple parts process planning in serial-parallel flexible flow lines: part I—process plan modeling framework. Int J Adv Manuf Technol 78(1–4):115–137.  https://doi.org/10.1007/s00170-014-6616-7 CrossRefGoogle Scholar
  16. 16.
    Musharavati F, Hamouda A (2015) Multiple parts process planning in serial–parallel flexible flow lines: part II—solution method based on genetic algorithms with fixed- and variable-length chromosomes. Int J Adv Manuf Technol 77(5–8):1105–1143.  https://doi.org/10.1007/s00170-014-6459-2 CrossRefGoogle Scholar
  17. 17.
    Yildiz S, Karasan OE, Akturk MS (2012) An analysis of cyclic scheduling problems in robot centered cells. Comput Oper Res 39(6):1290–1299.  https://doi.org/10.1016/j.cor.2010.09.005 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zhou B-h, Li M (2017) Scheduling method of robotic cells with robot-collaborated process and residency constraints. Int J Comput Integr Manuf:1–15.  https://doi.org/10.1080/0951192X.2017.1328561
  19. 19.
    Nie X, Chen X, Chen X (2016) Simulation study of flexible manufacturing cell based on token-oriented petri net model. Int J Simul Model (IJSIMM) 15(3)Google Scholar
  20. 20.
    Barenji RV, Barenji AV, Hashemipour M (2014) A multi-agent RFID-enabled distributed control system for a flexible manufacturing shop. Int J Adv Manuf Technol 71(9–12):1773–1791.  https://doi.org/10.1007/s00170-013-5597-2 CrossRefGoogle Scholar
  21. 21.
    Hernández-Pérez H, Salazar-González J-J (2004) A branch-and-cut algorithm for a traveling salesman problem with pickup and delivery. Discret Appl Math 145(1):126–139.  https://doi.org/10.1016/j.dam.2003.09.013 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • Mazyar Ghadiri Nejad
    • 1
  • Gergely Kovács
    • 2
  • Béla Vizvári
    • 1
  • Reza Vatankhah Barenji
    • 3
  1. 1.Department of Industrial EngineeringEastern Mediterranean UniversityFamagusta, TRNCTurkey
  2. 2.Edutus CollegeTatabányaHungary
  3. 3.Department of industrial engineeringHacettepe UniversityAnkaraTurkey

Personalised recommendations