Skip to main content
Log in

A study on the effects of machining variables in surface grinding of CFRP composites using rotary ultrasonic machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to their excellent properties, carbon fiber-reinforced plastic (CFRP) composites are attractive in many industries, including aerospace, automobile, sports, etc. The structure of anisotropy and heterogeneity and the high abrasive resistance of carbon fibers make CFRPs difficult to cut in surface grinding processes. Many problems, including high cutting force, high tool wear, severe delamination, and high cutting temperature, are associated with conventional surface grinding processes. To reduce or eliminate these problems, surface grinding of CFRP composites using rotary ultrasonic machining (RUM) has been conducted. Machining variables play dominant roles in such a process. However, no investigations on effects of machining variables on output variables were reported. This paper, for the first time, reports effects of machining variables (ultrasonic power, tool rotation speed, feed rate, and depth of cut) on output variables (cutting force, torque, and surface roughness). The results revealed that the cutting force could be decreased by using higher level of ultrasonic power, higher level of tool rotation speed, lower level of feed rate, or lower level of depth of cut. Lower surface roughness could be achieved by a decrease of ultrasonic power, an increase of tool rotation speed, a decrease of feed rate, or a decrease of depth of cut. The machined CFRP surfaces’ morphology and the characteristics of damaged carbon fibers were, for the first time, analyzed and reported in such a process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu NS, Zhang LC (2004) Some observations in grinding unidirectional carbon fibre-reinforced plastics. J Mater Process Technol 152(3):333–338. https://doi.org/10.1016/j.jmatprotec.2004.04.374

    Article  Google Scholar 

  2. Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Technol 160(2):160–167. https://doi.org/10.1016/j.jmatprotec.2004.06.003

    Article  Google Scholar 

  3. Sasahara H, Kikuma T, Koyasu R, Yao Y (2014) Surface grinding of carbon fiber reinforced plastic (CFRP) with an internal coolant supplied through grinding wheel. Precis Eng 38(4):775–782. https://doi.org/10.1016/j.precisioneng.2014.04.005

    Article  Google Scholar 

  4. Hintze W, Cordes M, Koerkel G (2015) Influence of weave structure on delamination when milling CFRP. J Mater Process Technol 216:199–205. https://doi.org/10.1016/j.jmatprotec.2014.09.004

    Article  Google Scholar 

  5. Karpat Y, Polat N (2013) Mechanistic force modeling for milling of carbon fiber reinforced polymers with double helix tools. CIRP Annals-Manuf Technol 62(1):95–98. https://doi.org/10.1016/j.cirp.2013.03.105

    Article  Google Scholar 

  6. Jia Z, Su Y, Niu B, Zhang B, Wang F (2016) The interaction between the cutting force and induced sub-surface damage in machining of carbon fiber-reinforced plastics. J Reinf Plast Compos 35(9):712–726. https://doi.org/10.1177/0731684415626284

    Article  Google Scholar 

  7. Jia Z, Fu R, Niu B, Qian B, Bai Y, Wang F (2016) Novel drill structure for damage reduction in drilling CFRP composites. Int J Mach Tools Manuf 110:55–65. https://doi.org/10.1016/j.ijmachtools.2016.08.006

    Article  Google Scholar 

  8. Jia, Z., Fu, R., Wang, F., Qian, B., & He, C. (2016). Temperature effects in end milling carbon fiber reinforced polymer composites. Polymer Composites

  9. Hintze W, Hartmann D, Schütte C (2011) Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs)—an experimental study. Compos Sci Technol 71(15):1719–1726. https://doi.org/10.1016/j.compscitech.2011.08.002

    Article  Google Scholar 

  10. Soo SL, Shyha IS, Barnett T, Aspinwall DK, Sim WM (2012) Grinding performance and workpiece integrity when superabrasive edge routing carbon fibre reinforced plastic (CFRP) composites. CIRP Ann-Manuf Technol 61(1):295–298. https://doi.org/10.1016/j.cirp.2012.03.042

    Article  Google Scholar 

  11. Zheng JX, Xu JW (2006) Experimental research on the ground surface quality of creep feed ultrasonic grinding ceramics (Al2O3). Chin J Aeronaut 19(4):359–365. https://doi.org/10.1016/S1000-9361(11)60341-5

    Article  Google Scholar 

  12. Liang Z, Wu Y, Wang X, Zhao W (2010) A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining. Int J Mach Tools Manuf 50(8):728–736. https://doi.org/10.1016/j.ijmachtools.2010.04.005

    Article  Google Scholar 

  13. Wang JJ, Zhang CL, Feng PF, Zhang JF (2016) A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass. Int J Adv Manuf Technol 83(1–4):347–355. https://doi.org/10.1007/s00170-015-7567-3

    Article  Google Scholar 

  14. Wang JJ, Zhang JF, Feng PF, Guo P (2018) Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: a critical review. Ceram Int 44(2):127–1239. https://doi.org/10.1016/j.ceramint.2017.10.050

    Google Scholar 

  15. Wang JJ, Feng PF, Zhang JF, Cai WC, Shen H (2017) Investigations on the critical feed rate guaranteeing the effectiveness of rotary ultrasonic machining. Ultrasonics 74:81–88. https://doi.org/10.1016/j.ultras.2016.10.003

    Article  Google Scholar 

  16. Wang H, Ning FD, Hu YB, Fernando PKSC, Pei ZJ, Cong WL (2016) Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables. Adv Mech Eng 8(9):1687814016670284

    Google Scholar 

  17. Liu S, Chen T, Wu C (2017) Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model. Int J Adv Manuf Technol 89(1–4):847–856. https://doi.org/10.1007/s00170-016-9151-x

    Article  Google Scholar 

  18. Cong WL, Pei ZJ, Sun X, Zhang CL (2014) Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force. Ultrasonics 54(2):663–675. https://doi.org/10.1016/j.ultras.2013.09.005

    Article  Google Scholar 

  19. Liu D, Cong WL, Pei ZJ, Tang Y (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tools Manuf 52(1):77–84. https://doi.org/10.1016/j.ijmachtools.2011.09.006

    Article  Google Scholar 

  20. Cao J, Wu Y, Li J, Zhang Q (2015) A grinding force model for ultrasonic assisted internal grinding (UAIG) of SiC ceramics. Int J Adv Manuf Technol 81(5–8):875–885. https://doi.org/10.1007/s00170-015-7282-0

    Article  Google Scholar 

  21. Ning FD, Cong WL, Wang H, Hu YB, Hu ZL, Pei ZJ (2017) Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. Int J Adv Manuf Technol 92(1–4):1217–1229. https://doi.org/10.1007/s00170-017-0149-9

    Article  Google Scholar 

  22. Pei ZJ, Prabhakar D, Ferreira PM, Haselkorn M (1995) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J Eng Ind 117(2):142–151. https://doi.org/10.1115/1.2803288

    Article  Google Scholar 

  23. Wang H, Ning FD, Hu YB, Cong WL (2017) Surface grinding of cfrp composites using rotary ultrasonic machining: a comparison of workpiece machining orientations. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-1401-z

  24. Tawakoli T, Azarhoushang B, Rabiey M (2009) Ultrasonic assisted dry grinding of 42CrMo4. Int J Adv Manuf Technol 42(9–10):883–891. https://doi.org/10.1007/s00170-008-1646-7

    Article  Google Scholar 

  25. Wang H, Ning FD, Hu YB, Du DP, Cong WL (2017) Surface grinding of CFRP composites using rotary ultrasonic machining: design of experiment on cutting force, torque, and surface roughness. Int J Manuf Res 12(1):1. https://doi.org/10.1504/IJMR.2017.10008389

    Article  Google Scholar 

  26. Wang H, Hu YB, Ning FD, Li YZ, Zhang M, Cong WL, & Smallwood S (2017). Surface grinding of CFRP composites using rotary ultrasonic machining: effects of ultrasonic power. In ASME 2017 12th international manufacturing science and engineering conference, pp.V001T02A045-V001T02A045. Am Soc Mech Eng. https://doi.org/10.1115/MSEC2017-2726

  27. Cong WL, Pei ZJ, Mohanty N, Van Vleet E, Treadwell C (2011) Vibration amplitude in rotary ultrasonic machining: a novel measurement method and effects of process variables. J Manuf Sci Eng 133(3):034501. https://doi.org/10.1115/1.4004133

    Article  Google Scholar 

  28. Ning FD, Wang H, Cong WL, Fernando PKSC (2017) A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76:44–51. https://doi.org/10.1016/j.ultras.2016.12.012

    Article  Google Scholar 

  29. Wang Y, Lin B, Wang S, Cao X (2014) Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. Int J Mach Tools Manuf 77:66–73. https://doi.org/10.1016/j.ijmachtools.2013.11.003

    Article  Google Scholar 

  30. Bhaduri D, Soo SL, Novovic D, Aspinwall DK, Harden P, Waterhouse C, Lucas M (2013) Ultrasonic assisted creep feed grinding of Inconel 718. Procedia CIRP 6:615–620. https://doi.org/10.1016/j.procir.2013.03.044

    Article  Google Scholar 

  31. Tawakoli T, Azarhoushang B (2008) Influence of ultrasonic vibrations on dry grinding of soft steel. Int J Mach Tools Manuf 48(14):1585–1591. https://doi.org/10.1016/j.ijmachtools.2008.05.010

    Article  Google Scholar 

  32. Spur G, Holl SE (1996) Ultrasonic assisted grinding of ceramics. J Mater Process Technol 62(4):287–293. https://doi.org/10.1016/S0924-0136(96)02422-3

    Article  Google Scholar 

  33. Kwak JS, Kim YS (2008) Mechanical properties and grinding performance on aluminum-based metal matrix composites. J Mater Process Technol 201(1):596–600. https://doi.org/10.1016/j.jmatprotec.2007.11.139

    Article  Google Scholar 

  34. Tawakoli T, Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel. Int J Mach Tools Manuf 51(2):112–119. https://doi.org/10.1016/j.ijmachtools.2010.11.002

    Article  Google Scholar 

  35. Ning FD, Cong WL, Pei ZJ, Treadwell C (2016) Rotary ultrasonic machining of CFRP: a comparison with grinding. Ultrasonics 66:125–132. https://doi.org/10.1016/j.ultras.2015.11.002

    Article  Google Scholar 

  36. Cong WL, Pei ZJ, Deines TW, Srivastava A, Riley L, Treadwell C (2012) Rotary ultrasonic machining of CFRP composites: a study on power consumption. Ultrasonics 52(8):1030–1037. https://doi.org/10.1016/j.ultras.2012.08.007

    Article  Google Scholar 

  37. Ning FD, Wang H, Hu YB, Cong WL, Zhang M, Li YZ (2017) Rotary ultrasonic surface machining of CFRP composites: a comparison with conventional surface grinding. Procedia Manuf 10:557–567. https://doi.org/10.1016/j.promfg.2017.07.049

    Article  Google Scholar 

  38. Pei ZJ, Ferreira PM (1998) Modeling of ductile-mode material removal in rotary ultrasonic machining. Int J Mach Tools Manuf 38(10):1399–1418. https://doi.org/10.1016/S0890-6955(98)00007-8

    Article  Google Scholar 

  39. Marinescu ID, Rowe WB, Dimitrov B, & Inaski I (2004). Tribology of abrasive machining processes. Elsevier

  40. Xu LF, Zhou L, Yu XL, & Huang ST (2011). An experimental study on grinding of SiC/al composites. In Advanced Materials Research (Vol. 188, pp. 90-93). Trans tech publications

  41. Denkena, B., Köhler, J., & Hahmann, D. (2011). Grinding of steel-ceramic-composites In Advanced Materials Research (Vol. 325, pp. 116-121). Trans tech publications. DOI: https://doi.org/10.4028/www.scientific.net/AMR.325.116

  42. Aurich JC, Herzenstiel P, Sudermann H, Magg T (2008) High-performance dry grinding using a grinding wheel with a defined grain pattern. CIRP Ann-Manuf Technol 57(1):357–362. https://doi.org/10.1016/j.cirp.2008.03.093

    Article  Google Scholar 

  43. Cong WL, Pei ZJ, Feng Q, Deines TW, Treadwell C (2012) Rotary ultrasonic machining of CFRP: a comparison with twist drilling. J Reinf Plast Compos 31(5):313–321. https://doi.org/10.1177/0731684411427419

    Article  Google Scholar 

  44. Cong WL, Feng Q, Pei ZJ, Deines TW, Treadwell C (2012) Rotary ultrasonic machining of carbon fiber-reinforced plastic composites: using cutting fluid vs. cold air as coolant. J Compos Mater 46(14):1745–1753. https://doi.org/10.1177/0021998311424625

    Article  Google Scholar 

  45. Hu YB, Wang H, Ning FD, Cong WL, & Li YZ (2017). Surface grinding of optical BK7/K9 glass using rotary ultrasonic machining: an experimental study. In ASME 2017 12th international manufacturing science and engineering conference, pp. V001T02A014-V001T02A014. Am Soc Mech Eng. https://doi.org/10.1115/MSEC2017-2780

  46. Cong WL, Pei ZJ, Churi N, Wang QG (2009) Rotary ultrasonic machining of stainless steel: design of experiments. Trans North Am Manuf Res Inst SME 37(1):261–268

    Google Scholar 

  47. Cong WL, Pei ZJ, Deines T, Wang QG, Treadwell C (2010) Rotary ultrasonic machining of stainless steels: empirical study of machining variables. Int J Manuf Res 5(3):370–386. https://doi.org/10.1504/IJMR.2010.033472

    Article  Google Scholar 

  48. Cong WL, Ning FD (2015) Chapter 2 rotary ultrasonic machining of CFRP composites. In: Davim JP (ed) Machinability of fibre-reinforced plastics. Walter de Gruyter GmbH & Co KG, Berlin, pp 31–81. https://doi.org/10.1515/9783110292251-003

    Google Scholar 

  49. Wang JJ, Feng PF, Zhang JF, Zhang CL, Pei ZJ (2016) Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials. Int J Mach Tools Manuf 101:18–27. https://doi.org/10.1016/j.ijmachtools.2015.10.005

    Article  Google Scholar 

  50. Wang JJ, Zha HT, Feng PF, Zhang JF (2016) On the mechanism of edge chipping reduction in rotary ultrasonic drilling: a novel experimental method. Precis Eng 44:231–235

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the U.S. National Science Foundation through award CMMI-1538381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilong Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cong, W., Ning, F. et al. A study on the effects of machining variables in surface grinding of CFRP composites using rotary ultrasonic machining. Int J Adv Manuf Technol 95, 3651–3663 (2018). https://doi.org/10.1007/s00170-017-1468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1468-6

Keywords

Navigation