Optimization of cutting conditions in slotting of multidirectional CFRP laminate

  • Souhir Gara
  • Oleg Tsoumarev


For metallic or composite materials, the judicious choice of cutting conditions depends on several factors that may be of such objectives (time, cost of production, material removal rate, etc.) or constraints (cutting force, temperature in the machining area, consumed power, etc.). The quality of the results depends on the optimization method and the efficiency of the algorithm involved. In this paper, graphical and particle swarm optimization (PSO) methods are proposed. They aim to determine the optimal cutting conditions (cutting speed and feed per tooth) in slotting of multidirectional carbon fiber reinforced plastic laminate (CFRP), referenced G803/914, with three knurled tools having different geometries. The experiences that led to the measures of roughness, temperature, cutting efforts, and consumed power are made in the same working conditions with cutting speed ranging from 80 to 200 m/min and feed per tooth from 0.008 to 0.060 mm/rev/tooth. The results illustrate that for the graphical method, the optimum cutting speed depends on the performance “maximum total removal rate” and is the same for all the studied knurled tools while optimum feed per tooth depends on the “roughness” performance: its value depends on the tool geometry. For the PSO technique, optimum cutting speed and feed per tooth values are variable and depend on the tool geometry.


CFRP Graphical method Knurled tool Optimization PSO Slotting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the National Engineering School of Monastir_TUNISIA, the National School of Engineers of Tunis_TUNISIA, and the Higher Institute of Technological Studies of Nabeul_TUNISIA for allowing us to use their equipments in the experimental work.


  1. 1.
    Bhatnagar N, Ramakrishnan N, Naik NK, Komanduri R (1995) On the machining of fiber reinforced plastic (FRP) composite laminates. Int J Mach Tools Manuf 35(5):701–716. CrossRefGoogle Scholar
  2. 2.
    Souhir G, Ramzi F, Sami N, Oleg T (2016) Prediction of cutting forces in slotting of multidirectional CFRP laminate. Int J Adv Manuf Technol.
  3. 3.
    Souhir G (2016) Approche théorique et expérimentale du détourage d’un composite en carbone/époxy moyennant des fraises à dentures croisées, thesis, Ecole Nationale d’Ingénieurs de TunisGoogle Scholar
  4. 4.
    Yang W, Guo Y, Liao W (2011) Optimization of multi-pass face milling using a fuzzy particle swarm optimization algorithm. Int J Adv Manuf Technol 54:45–57CrossRefGoogle Scholar
  5. 5.
    Costa A, Celano G, Fichera S (2011) Optimization of multi-pass turning economies through a hybrid particle swarm optimization technique. Int J Adv Manuf Technol 53:421–433CrossRefGoogle Scholar
  6. 6.
    Zheng, L. Y. and Ponnambalam, S. G. (2010) Optimization of multipass turning operations using particle swarm optimization. 7th International Symposium on Mechatronics and its Applications. pp: 1–6Google Scholar
  7. 7.
    Liu H, Huang W (2008) Computer numerical control machining parameter optimization based on particle swarm optimization. Tongji Daxue Xuebao/J Tongji Univ 36(6):803–806Google Scholar
  8. 8.
    Ganesan H, Mohankumar G, Ganesan K, Ramesh KK (2011) Optimization of machining parameters in turning process using genetic algorithm and particle swarm optimization with experimental verfification. Int J Eng Sci Technol 3:1091–1102Google Scholar
  9. 9.
    Rao RV, Pawar PJ (2010) Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Appl Soft Comput 10(2):445–456CrossRefGoogle Scholar
  10. 10.
    Tang L, Landers RG, Balakrishnan SN (2008) Parallel turning process parameter optimization based on a novel heuristic approach. J Manuf Sci Eng 130(3):031002-1–031002-12CrossRefGoogle Scholar
  11. 11.
    Razfar MR, Asadnia M, Haghshenas M, Farahnakian M (2010) Optimum surface roughness prediction in face milling X20Cr13 using particle swarm optimization algorithm. Proc Inst Mech Eng B J Eng Manuf 224(11):1645–1653. CrossRefGoogle Scholar
  12. 12.
    Escamilla, I., Perez, P., Torres, L., Zambrano, P., & Gonzalez, B. (2009) Optimization using neural network modeling and swarm intelligence in the machining of titanium (ti 6al 4v) alloy. 8th Mexican International Conference on Artificial Intelligence, pp: 33–38Google Scholar
  13. 13.
    Prakasvudhisarn C, Kunnapapdeelert S, Yenradee P (2009) Optimal cutting condition determination for desired surface roughness in end milling. Int J Adv Manuf Technol 41:440–451CrossRefGoogle Scholar
  14. 14.
    Zhao H, Li JG, Yao YX, Liu CQ (2008) Cutting parameters optimization for constant cutting force in milling. Appl Mech Mater 10–12:483–487CrossRefGoogle Scholar
  15. 15.
    Zŭperl U, Cŭs F, Gecevska V (2007) Optimization of the characteristic parameters in milling using the PSO evolution technique. J Mech Eng 6:354–368Google Scholar
  16. 16.
    Rao RV, Pawar PJ (2010) Grinding process parameter optimization using non-traditional optimization algorithms. Proc Inst Mech Eng B J Eng Manuf 224(6):887–898CrossRefGoogle Scholar
  17. 17.
    Chen, Z. and Li, Y. (2008) An improved particle swarm algorithm and its application in grinding process optimization. Proceedings of the 27th Chinese Control Conference. pp: 2–5Google Scholar
  18. 18.
    Huang, H., Li, A., & Lin, X. (2007) Application of PSO-based Wavelet Neural Network in Tool Wear Monitoring. Proceedings of the IEEE International Conference on Automation and Logistics, pp: 2813–2817Google Scholar
  19. 19.
    Paulo DJ, Conceicao Antonio C (2001) Optimisation of cutting conditions in machining of aluminium matrix composites using a numerical and experimental model. J Mater Process Technol 112:78–82CrossRefGoogle Scholar
  20. 20.
    Jihong Y, Lin L (2013) Multi-objective optimization of milling parameters—the tradeoffs between energy, production rate and cutting quality. J Clean Prod 52:462–471CrossRefGoogle Scholar
  21. 21.
    Ferreira JR, Coppini NL, Miranda GWA (1999) Machining optimization in carbon fibre reinforced composite materials. J Mater Process Technol 92-93:135–140. CrossRefGoogle Scholar
  22. 22.
    Adam Khan M, Senthil Kumar A, Poomari A (2012) A hybrid algorithm to optimize cutting parameters for machining GFRP composite using alumina cutting tools. Int J Adv Technol 59:1047–1056CrossRefGoogle Scholar
  23. 23.
    Vundavilli PR, Jogi PK, Maddina SR (2013) Evolutionary and swarm based optimization of turning of GFRP composites using PCD tooling. Acade J Manuf Eng 11(1):125–130Google Scholar
  24. 24.
    H. Chibane, R.Serra, A.Morandeau, R. Leroy (2013) Process optimisation for milling carbon/epoxy composite material using response surface methodology and vibration analysis, 19th International Conference on Composite Materials, Montréal, CanadaGoogle Scholar
  25. 25.
    Chandrasekaran M, Devarasiddappa D (2012) Development of predictive model for surface roughness in end milling of Al-SiCp metal matrix composites using fuzzy logic. World Acad Sci Eng Technol 6:07–25Google Scholar
  26. 26.
    Souhir G, Oleg T (2015) Effect of tool geometry on surface roughness in slotting of CFRP. Int J Adv Manuf Technol.
  27. 27.
    Barlier C, Girardin L (1992) Memotech productique, matériaux et usinage. Collection A.Capliez, ParisGoogle Scholar
  28. 28.
    Alfredo Armando Aguilera Leon (2000) Optimisation des conditions de coupe pour l'usinage du bois, Application de la méthode Couple Outil Matière au défonçage des panneaux de fibres de densité moyenne, thesis, Ecole Nationale Supérieure des Technologies et Industries du Bois (ENSTIB)Google Scholar
  29. 29.
    David Trif (2012) Conception de l’usinage, optimisation des opérations de tournage, VII èmes Journées d’Etudes Techniques, Marrakech–MarocGoogle Scholar
  30. 30.
    Daniel Iliescu (2008) Approches expérimentale et numérique de l’usinage à sec des composites carbone/époxy, thesis, ENSAMGoogle Scholar
  31. 31.
    Ceratizit, rods and performs, general catalogue, Luxembourg, 2013Google Scholar
  32. 32.
    Yusup N, Zain AM, Hashim SZM (2012) Overview of PSO for optimization process parameters of machining. Procedia Eng 29:914–923CrossRefGoogle Scholar
  33. 33.
    Janardhan Prashanth (2005) Tool wear of diamond interlocked tools in routing of CFRP composites, thesis, Faculty of the Graduate School of Wichita State UniversityGoogle Scholar
  34. 34.
    Bhushan RK (2013) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod 39:242–254CrossRefGoogle Scholar
  35. 35.
    I. Hanafi, F. Mata Cabrera, F. Dimane, J. Tejero Manzanares, K. Haboubi, A. El Himri (2015) Application of particle swarm optimization for optimizing the process parameters in turning of PEEK CF30 composites, 22ème Congrès Français de Mécanique, Lyon, 24 au 28 AoûtGoogle Scholar
  36. 36.
    Shunmugesh K, Panneerselvam K (2016) Machinability study of carbon fiber reinforced polymer in the longitudinal and transverse direction and optimization of process parameters using PSO–GSA. Eng Sci Technol 19(3):1552–1563Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratoire de Recherche Mécanique Appliquée et Ingénierie (MAI)ENIT—BP 37Tunis Le BelvedereTunisia

Personalised recommendations