Advertisement

A predictive approach to investigate the effect of ultrasonic shot peening on a high-cycle fatigue performance of an AISI 316L target

  • S. Manchoul
  • R. Seddik
  • R. Grissa
  • R. Ben Sghaier
  • R. Fathallah
ORIGINAL ARTICLE
  • 128 Downloads

Abstract

This paper presents a predictive numerical-analytical approach to evaluate the effect of an ultrasonic shot peening process on the fatigue strength of metallic parts using the multi-axial fatigue criterion of Dang Van. This approach is constituted by four principal steps: (i) developing a 3D finite element model of ultrasonic shot peening treatment, (ii) predicting surface conditions induced by the ultrasonic shot peening model (residual stress profile, superficial damage, and equivalent plastic strain), (iii) evaluating the change of the surface conditions after relaxation, and (iv) assessing the fatigue performance of ultrasonic peened parts based on the high-cycle fatigue indicator ISP%. An application of the proposed approach is carried out on the AISI 316L material. The obtained results are physically coherent and are in good harmony with the previous experimental investigations.

Keywords

Ultrasonic shot peening Surface conditions Relaxation High-cycle fatigue indicator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fathallah R, Laamouri A, Sidhom H (2004) High cycle fatigue behavior prediction of shot-peened parts. Int J Fatigue 26(10):1053–1067.  https://doi.org/10.1016/j.ijfatigue.2004.03.007 CrossRefGoogle Scholar
  2. 2.
    Sidhom N, Laamouri A, Fathallah R, Braham C, Lieurade HP (2005) Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach. Int J Fatigue 27(7):729–745.  https://doi.org/10.1016/j.ijfatigue.2005.02.001 CrossRefGoogle Scholar
  3. 3.
    Dalaei K, Karlsson B, Svensson LE (2010) Stability of residual stresses created by shot peening of pearlitic steel and their influence on fatigue behavior. Procedia Eng 2(1):613–622.  https://doi.org/10.1016/j.proeng.2010.03.066 CrossRefGoogle Scholar
  4. 4.
    Torres MAS, Voorwald HJC (2002) An evaluation of shot peening residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24(8):877–886.  https://doi.org/10.1016/S0142-1123(01)00205-5 CrossRefGoogle Scholar
  5. 5.
    Fathallah R, Sidhom H, Braham C, Castex L (2003) Effect of surface properties on high cycle fatigue behavior of a shot peened ductile steel. Mater Sci Technol 19(8):1050–1056.  https://doi.org/10.1179/026708303225003027 CrossRefGoogle Scholar
  6. 6.
    Eleiche AM, Megahed MM, Add-allah NM (2001) The shot peening effect on the HCF behavior of high-strength martensitic steels. J Mater Process Technol 113(1-3):502–508.  https://doi.org/10.1016/S0924-0136(01)00601-X CrossRefGoogle Scholar
  7. 7.
    Seddik R, Bahloul A, Atig A, Fathallah R (2017) A simple methodology to optimize shot-peening process parameters using finite element simulations. J Adv Manuf Technol 90(5-8):2345–2361.  https://doi.org/10.1007/s00170-016-9532-1 CrossRefGoogle Scholar
  8. 8.
    Wang S, Li Y, Yao M, Wang R (1998) Compressive residual stress introduced by shot peening. J Mater Process Technol 73:64–73CrossRefGoogle Scholar
  9. 9.
    Fathallah R, Inglebert G, Castex L (2003) Determination of shot peening coefficient of restitution. Surf Eng 19(2):109–113.  https://doi.org/10.1179/026708403225002559 CrossRefGoogle Scholar
  10. 10.
    Zhiming L, Laimin S, Shenjin Z, Zhidong T, Yazhou J (2015) Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel. Mater Sci Eng A637:170–174CrossRefGoogle Scholar
  11. 11.
    Laneza V, Belzunce FJ (2015) Study of the effects produced by shot peening on the surface of quenched and tempered steels: roughness, residual stresses and work hardening. Appl Surf Sci 356:475–485.  https://doi.org/10.1016/j.apsusc.2015.08.110 CrossRefGoogle Scholar
  12. 12.
    Chaise T, Li J, Nelias D, Kubler R, Taheri S, Douchet G, Robin V, Gilles P (2012) Modeling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP). J Mater Process Technol 212(10):2080–2090.  https://doi.org/10.1016/j.jmatprotec.2012.05.005 CrossRefGoogle Scholar
  13. 13.
    Fei Y, Lin H, Xiaoming W, Milan R, Qingyou (2014) Numerical modeling and experimental approach for surface morphology evaluation during ultrasonic shot peening. Comput Mater Sci 92:28–35CrossRefGoogle Scholar
  14. 14.
    Zhang X, Lu J, Shi S (2011) A computational study of plastic deformation in AISI304 induced by surface mechanical attrition treatment. Mech Adv Mater Struct 18(8):572–577.  https://doi.org/10.1080/15376494.2011.621828 CrossRefGoogle Scholar
  15. 15.
    Rousseau T, Hoc T, Gilles P, Nouguier-Lehon C (2015) Effect of bead quantity in ultrasonic shot peening: surface analysis and numerical simulations. J Mater Process Technol 225:413–420.  https://doi.org/10.1016/j.jmatprotec.2015.06.027 CrossRefGoogle Scholar
  16. 16.
    Nouguier-Lehon C, Zarwel M, DivianiC HD, Zahouani H, Hoc T (2013) Surface impact analysis in shot peening process. Wear 302(1-2):1058–1063.  https://doi.org/10.1016/j.wear.2012.11.031 CrossRefGoogle Scholar
  17. 17.
    Badreddine J, Remy S, Micoulaut M, Rouhaud E, Desfontaine V, Renaud P (2014) CAD based model of ultrasonic shot peening for complex industrial parts. Adv Eng Softw 76:31–42.  https://doi.org/10.1016/j.advengsoft.2014.05.010 CrossRefGoogle Scholar
  18. 18.
    Duchazeaubeneix J (1999) Stressonic shot peening (ultrasonic process). Proceedings of the ICSP-7 conference, WarsawGoogle Scholar
  19. 19.
    Marteau J, Bigerelleb M, Mazerana P, Bouviera E (2015) Relation between roughness and processing conditions of AISI 316L stainless steel treated by ultrasonic shot peening. Tribol Int 82:319–329.  https://doi.org/10.1016/j.triboint.2014.07.013 CrossRefGoogle Scholar
  20. 20.
    Manchoul S, Seddik R, Ben Sghaeir R, Fathallah R (2017) Finite element modeling of ultrasonic and conventional shot peening: a comparison of the effect of both processes on surface conditions. Proc Inst Mech Eng L J Mat Des Appl  https://doi.org/10.1177/1464420717719474
  21. 21.
    AlMangour B, Yang J-M (2016) Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110:914–924.  https://doi.org/10.1016/j.matdes.2016.08.037 CrossRefGoogle Scholar
  22. 22.
    Aggarwal ML, Agrawal VP, Khan RA (2006) A stress approach model for predictions of fatigue life by shot peening of EN45A spring steel. Int J Fatigue 28:1845–1853CrossRefGoogle Scholar
  23. 23.
    Toshifumi KAKIUCHI, Yoshihiko UEMATSU, Norihiko HASEGAWA, Eisuke KONDOH (2016) Effect of ultrasonic shot peening on high cycle fatigue behavior in type 304 stainless steel at elevated temperature. J Society Mater Sci 65:325–330CrossRefGoogle Scholar
  24. 24.
    Li J (2011). Simulation de Réparation par Soudage et Billage Ultrasonore d’un Alliage à Base Nickel. PhD thesis LaMCoS LyonGoogle Scholar
  25. 25.
    ABAQUS Theory manual (2011). Version 6.10. Hibbitt, Karlsso and Sorensen Inc, USAGoogle Scholar
  26. 26.
    Seddik R, Ben Sghaier R, Fathallah R (2016) A numerical-analytical approach to predict the effects of shot peening on the fatigue performance of the nickel-based super alloy Waspaloy. Proc Inst Mech Eng Part L J Mater Des Appl.  https://doi.org/10.1177/1464420716663030
  27. 27.
    Fathallah R (1994). Modélisation du Procédé de Grenaillage: Incidence des Billes et Taux de Recouvrement. PhD thesis ENSAM ParisGoogle Scholar
  28. 28.
    Chaboche J-L (1977). Sur l’utilisation des variables d’état interne pour la description de la viscoplasticité cyclique avec endommagement. In Problèmes Non Linéaires de Mécanique, Symposium Franco-Polonais de Rhéologie et Mécanique 137–159Google Scholar
  29. 29.
    Armstrong PJ, Frederick CO (1966) A mathematical representation of the multi-axial Bauschinger effect. Technical report RD/B/N731, CEGBGoogle Scholar
  30. 30.
    Lemaitre J, Chaboche JL (2002) Mécanique des matériaux solides. Dunod (Edition 2), ISBN 2 10 005662XGoogle Scholar
  31. 31.
    Zaroog OS, Aidy A, Sahari BB, Zahari R (2011) Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy. Int J Fatigue 33(2):279–285.  https://doi.org/10.1016/j.ijfatigue.2010.08.012 CrossRefGoogle Scholar
  32. 32.
    Seddik R, Petit EJ, Rabii BS, Atig A, Fathallah R (2017) Predictive design approach of high-cycle fatigue limit of shot-peened parts. Int J Adv Manuf Technol 93(5-8):2321–2339.  https://doi.org/10.1007/s00170-017-0704-4 CrossRefGoogle Scholar
  33. 33.
    DangVan K (1999) Introduction to fatigue analysis in mechanical design by the multiscale approach. In: Dangvan K, Papadoupoulos IV (eds) High cycle metal fatigue in the context of mechanical design, CISM courses and lectures no., vol 392. Springer-Verlag, Berlin, pp 57–88Google Scholar
  34. 34.
    Deperrois A (1991) Calcul de la limite d’endurance des aciers. PhD thesis Ecole Polytechnique, Paris FranceGoogle Scholar
  35. 35.
    Laamouri A, Sidhom H, Braham C (2013) Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316Lstainless steel ground surfaces: experimental and numerical approaches. Int J Fatigue 48:109–121.  https://doi.org/10.1016/j.ijfatigue.2012.10.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • S. Manchoul
    • 1
  • R. Seddik
    • 1
  • R. Grissa
    • 1
  • R. Ben Sghaier
    • 1
    • 2
  • R. Fathallah
    • 1
  1. 1.National Engineering School of SousseUniversity of SousseSousseTunisia
  2. 2.Institute of Applied Sciences and Technology of Sousse, Ibn KhaldounUniversity of SousseSousseTunisia

Personalised recommendations