Deposition of aluminum powder by cold spray micronozzle

  • A. Sova
  • I. Smurov
  • M. Doubenskaia
  • P. Petrovskiy


Spatial resolution of cold spray depends on the exit dimension of converging-diverging nozzle used for particle acceleration. Typical diameter of cold spray nozzle lies in the range between 4 and 10 mm. In this study, micronozzle with 0.5 mm throat diameter and 1 mm exit diameter is applied for cold spray deposition of aluminum powder. Numerical simulation and experimental velocity measurements demonstrate that aluminum particles could be accelerated to the velocity sufficient for coating deposition if room temperature helium is applied as working gas. The diameter of spraying spot in this case does not exceed 1.7–1.8 mm that is significantly lower than for standard cold spray nozzle. However, the density and the bond strength of obtained aluminum coating are significantly lower than those for standard cold spray aluminum deposits.


Cold spray Optical diagnostics Particle velocity Micronozzle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was carried out with financial support from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (№ К1-2016-030), implemented by the governmental decree dated on 16th of March 2013, N 211.


  1. 1.
    Papyrin A, Kosarev V, Klinkov S, Alkhimov A, Fomin V (2007) Cold spray technology. Elsevier Science, Amsterdam, p 336Google Scholar
  2. 2.
    Vilafuerte J (2015) Modern cold spray: theory process and applications. Springer International Publishing, Basel. CrossRefGoogle Scholar
  3. 3.
    Cavaliere P, Silvello A (2014) Processing parameters affecting cold spay coatings performances. Int J Adv Manuf Technol 71(1–4):263–277. CrossRefGoogle Scholar
  4. 4.
    Cavaliere P, Silvello A (2015) Processing conditions affecting residual stresses and fatigue properties of cold spray deposits. Int J Adv Manuf Technol 81(9–12):1857–1862. CrossRefGoogle Scholar
  5. 5.
    Assadi H, Kreye H, Gärtner F, Klassen T (2016) Cold spraying – a materials perspective. Acta Mater 116:382–407. CrossRefGoogle Scholar
  6. 6.
    Schmidt K, Buhl S, Davoudi N, Godard C, Merz R, Raid I, Kerscher E, Kopnarski M, Müller-Renno C, Ripperger S, Seewig J, Ziegler C, Antonyuk S (2016) Ti surface modification by cold spraying with TiO2 microparticles. Surf Coat Technol 309:749–758. CrossRefGoogle Scholar
  7. 7.
    Wei J, Zang Z, Zhang Y, Wang M, Du J, Tang X (2017) Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt Lett 42(5):911–914. CrossRefGoogle Scholar
  8. 8.
    Jodoin B, Richer P, Berube G, Ajdelsztajn L, Erdi-Betchi A, Yandouzi M (2007) pulsed-gas dynamic spraying: process analysis, development and selected coating examples. Surf Coat Technol 201(16-17):7544–7551. CrossRefGoogle Scholar
  9. 9.
    Li W-Y, Liao H, Wang H-T, Li C-J, Zhang G, Coddet C (2006) Optimal Design of a Convergent-Barrel Cold Spray Nozzle by numerical method. Appl Surf Sci 253(2):708–713. CrossRefGoogle Scholar
  10. 10.
    Schmidt T, Gaertner F, Kreye H (2006) New developments in cold spray based on higher gas- and particle temperatures. J Thermal Spray Technol 15(4):488–494. CrossRefGoogle Scholar
  11. 11.
    Irissou E, Legoux J-G, Ryabinin AN, Jodoin B, Moreau C (2008) Review on Cold Spray Process and Technology: Part I. Intellectual property. J Thermal Spray Technol 17(4):495–516CrossRefGoogle Scholar
  12. 12.
    Klinkov SV, Kosarev VF, Zaikovskii VN (2011) Influence of Flow Swirling and Exit Shape of Barrel Nozzle on Cold Spraying. J. Therm Spray Technol 20(4):837–844. CrossRefGoogle Scholar
  13. 13.
    Klinkov SV, Kosarev VF, Zaikovskii VN (2016) Preliminary study of cold spraying using radial supersonic nozzle. Surface Eng 32(9):701–706CrossRefGoogle Scholar
  14. 14.
    Klinkov S, Kosarev V, Ryashin N, Shikalov V (2016) Experimental study of cold gas spraying through a mask Part 1. Thermophys Aeromech 23(5):735–740. CrossRefGoogle Scholar
  15. 15.
    Sova A, Doubenskaia M, Grigoriev S, Okunkova A, Smurov I (2013) Parameters of the gas-powder supersonic jet in cold spraying using a mask. J Therm Spray Technol 22(4):551–556. CrossRefGoogle Scholar
  16. 16.
    Klinkov SV, Kosarev VF, Ryashin NS (2017) Comparison of experiments and computations for cold gas spraying through a mask. Part 2. Thermophys Aeromech 24(2):213–224. CrossRefGoogle Scholar
  17. 17.
    Cormier Y, Dupuis P, Jodoin B, Corbeil A (2013) Net shape fins for compact heat exchanger produced by cold spray. J Therm Spray Technol 22(7):1210–1221. CrossRefGoogle Scholar
  18. 18.
    Lupoi R, O'Neill W (2011) Powder stream characteristics in cold spray nozzles. Surf And Coat Technol 206(6):1069–1076. CrossRefGoogle Scholar
  19. 19.
    Zaikovskii VN, Klinkov SV, Kosarev VF, Melamed BM, Trubacheev GV (2014) Control of spray spot in cold spray technology. Part 1. Gas dynamic aspects. Thermophys Aeromech 21(1):105–112. CrossRefGoogle Scholar
  20. 20.
    Zaikovskii VN, Klinkov SV, Kosarev VF, Melamed BM, Trubacheev GV (2014) Control of spray spot shape in cold spray technology. Part 2. Spraying process. Thermophys Aeromech 21(2):223–230. CrossRefGoogle Scholar
  21. 21.
    Sova A, Klinkov S, Kosarev V, Ryashin N, Smurov I (2013) Preliminary study on deposition of aluminium and copper powders by cold spray micronozzle using helium. Surf Coat Technol 220:98–101. CrossRefGoogle Scholar
  22. 22.
    Sova A, Okunkova A, Grigoryev S, Smurov I (2013) Velocity of the particles accelerated by a cold spray micronozzle: experimental measurements and numerical simulation. J Therm Spray Technol 22(1):75–80. CrossRefGoogle Scholar
  23. 23.
    Yin S, Meyer M, Li W, Liao H, Lupoi R, Flow G (2016) Particle acceleration, and heat transfer in cold spray: a review. J Therm Spray Technol 25(5):874–896. CrossRefGoogle Scholar
  24. 24.
    Schmidt T, Assadi H, Gartner F, Richter H, Stoltenhoff T, Kreye H, Klassen T (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol 18(5-6):794–808. CrossRefGoogle Scholar
  25. 25.
    Doubenskaia D, Novichenko A, Sova D (2010) Pervoushin Particle-in-flight monitoring in thermal spray processes. Surf Coat Technol 205:1092–1095CrossRefGoogle Scholar
  26. 26.
    Henderson CB (1976) Drag coefficient of spheres in continuum and rarefied flows. AIAA J 14(6):707–708. CrossRefGoogle Scholar
  27. 27.
    Fukanuma H, Ohno N, Sun B, Huang R (2006) In-flight particle velocity measurements with DPV-2000 in cold spray. In Surf Coat Technol 201(5):1935–1941. CrossRefGoogle Scholar
  28. 28.
    Gilmore DL, Dykhuizen RC, Neiser RA, Roemer TJ, Smith MF (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Technol 8(4):576–582. CrossRefGoogle Scholar
  29. 29.
    "Li S, Muddle B, Jahedi M, Soria J, Numerical Investigation A (January 2012) Of the cold spray process using Underexpanded and Overexpanded jets. J Therm Spray Technol 21(1):108–120. CrossRefGoogle Scholar
  30. 30.
    Irissou E, Legoux J-G, Arsenault B, Moreau C (2007) Investigation of al-Al2O3 cold spray coating formation and properties. J Therm Spray Technol 16(5-6):661–668. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • A. Sova
    • 1
  • I. Smurov
    • 1
  • M. Doubenskaia
    • 1
  • P. Petrovskiy
    • 2
  1. 1.National Engineering School of Saint-Etienne (ENISE), LTDS Laboratory UMR 5513Université LyonSaint-EtienneFrance
  2. 2.National University of Science and Technology (“MISIS”)MoscowRussia

Personalised recommendations