Manufacturing and mechanical characterization of Al2O3/β-TCP/TiO2 biocomposite as a potential bone substitute

  • Rachida Barkallah
  • Rym Taktak
  • Noamen Guermazi
  • Fahmi Zaïri
  • Jamel Bouaziz
  • Fahed Zaïri


This paper focuses on the mechanical characterization of a bioceramic based on commercial alumina (Al2O3) mixed with synthesized tricalcium phosphate (β-TCP) and commercial titania powder (TiO2). The effect of β-TCP and TiO2 addition on the mechanical performance was investigated. After a sintering process at 1600 °C for 1 h, various mechanical properties of the samples have been studied, such as compressive strength, flexural strength, tensile strength, elastic modulus, and fracture toughness. The measurements of the elastic modulus (E) and the tensile strength (σ t ) were conducted using the modified Brazilian test while the compressive strength (σ c ) was determined through a compression test. Also, semi-circular bending (SCB) specimens were used to evaluate the flexural strength (σ f ) and the opening mode fracture toughness (K IC). From the main results, it was found that the best mechanical performance is obtained with the addition of 10 wt.% TCP and 5 wt.% TiO2. Alumina/10 wt.% tricalcium phosphate/5 wt.% titania composites displayed the highest values of mechanical properties and a good combination of compressive strength (σ c  ≈ 352 MPa), flexural strength (σ f  ≈ 98 MPa), tensile strength (σ t  ≈ 86.65 MPa), and fracture toughness (K IC ≈ 13 MPa m1/2).


Alumina Tricalcium phosphate Flattened Brazilian disc Compression test Semi-circular bending 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Compliance with ethical standards

Conflict interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ebrahimi M, Botelho MG, Dorozhkin SV (2017) Biphasic calcium phosphates bioceramics (HA/TCP): concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater Sci Eng C 71:1293–1312. CrossRefGoogle Scholar
  2. 2.
    Sakka S, Bouaziz J, Ben Ayed F (2014) Sintering and mechanical properties of the alumina-tricalcium phosphate-titania composites. Mater. Sci. Eng. C 40:92–101. CrossRefGoogle Scholar
  3. 3.
    Williams D (1990) An introduction to medical and dental materials. In: Williams D (ed) Concise encyclopedia of medical & dental materials. Pergamon PressGoogle Scholar
  4. 4.
    Fielding GA, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28(2):113–122. CrossRefGoogle Scholar
  5. 5.
    Ayadi I, Ben Ayed F (2016) Mechanical optimization of the composite biomaterial based on the tricalcium phosphate, titania and magnesium fluoride. J. Mech. Behav. Biomed Mater 60:568–580CrossRefGoogle Scholar
  6. 6.
    Sprion S, Guicciardi S, Dapporto M, Melandri C, Tampieri A (2013) Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments. J Mech Behav Biomed Mater 17:1–10. CrossRefGoogle Scholar
  7. 7.
    Mehmanparast HN, Mac-Thiong JM, Petit Y (2012) Compressive properties of a synthetic bone substitute for vertebral cancellous bone. Int J Med Heal Biom Bioeng Phar Eng 6:144–147Google Scholar
  8. 8.
    Liu C, Wan P, Tan LL, Wang K, Yang K (2014) Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications. J Orth Tran 2:139–148Google Scholar
  9. 9.
    Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C (2006) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2(5):557–565. CrossRefGoogle Scholar
  10. 10.
    Ayatollahi MR, Aliha MRM, Saghafi H (2011) An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Eng Fract Mech 78(1):110–123. CrossRefGoogle Scholar
  11. 11.
    Xie Y, Cao P, Jin J, Wang M (2017) Mixed mode fracture analysis of semi-circular bend (SCB) specimen: a numerical study based on extended finite element method. Comput Geotech 82:157–172. CrossRefGoogle Scholar
  12. 12.
    Kuruppu MD, Chong KP (2012) Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Eng Fract Mech 91:133–150. CrossRefGoogle Scholar
  13. 13.
    Barker LM (1977) A simplified method for measuring plane strain fracture toughness. Eng Fract Mech 9(2):361–364. CrossRefGoogle Scholar
  14. 14.
    M. Thiercelin, J.C. Roegiers, Fracture toughness determination with the modified ring test, In: H.L. Hartmann (Ed.), Proc. 27th US Symp. on Rock Mech., SME, Littleton CO, 1986 p. 615–622Google Scholar
  15. 15.
    Chang SH, Lee CI, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1-2):79–97. CrossRefGoogle Scholar
  16. 16.
    Ayatollahi MR, Aliha MRM (2006) On determination of mode II fracture toughness using semi-circular bend specimen. Int J Solids Struct 43(17):5217–5227. CrossRefzbMATHGoogle Scholar
  17. 17.
    Sakka S, Ben Ayed F, Bouaziz J (2012) Mechanical properties of tricalcium phosphate-alumina composites. Mater Sci Eng 28:012028Google Scholar
  18. 18.
    Mazel V, Guerard S, Croquelois B, Kopp JB, Girardot J, Diarra H, Busignies V, Tchoreloff P (2016) Reevaluation of the diametral compression test for tablets using the flattened disc geometry. Int J Pharm 513(1–2):669–677. CrossRefGoogle Scholar
  19. 19.
    Wang QZ, Li W, Xie HP (2009) Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech Mater 41(3):252–260. CrossRefGoogle Scholar
  20. 20.
    Wang QZ, Jia XM, Kou SQ, Zhang ZX, Lindqvist PA (2004) The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int. J. Rock. Mech. Min. Sci. & Geo. 41:245–253CrossRefGoogle Scholar
  21. 21.
    ASTM C1424-15: standard test method for monotonic compressive strength of advanced ceramics at ambient temperature, ASTM International, West Conshohocken, PA, 2015Google Scholar
  22. 22.
    Dai F, Xia K, Zuo JP, Zhang R, Xu NW (2013) Static and dynamic flexural strength anisotropy of barre granite. Rock Mech Rock Eng 46(6):1589–1602. CrossRefGoogle Scholar
  23. 23.
    Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 1-mode I. Int J Rock Mech Min Sci Geo 31:185–197CrossRefGoogle Scholar
  24. 24.
    Sakka S, Bouaziz J, Ben Ayed F (2013) Mechanical properties of biomaterials based on calcium phosphates and bioinert oxides for applications in biomedicine. In: Pignatello R (ed) Advances in biomaterials science and biomedical applications. InTech, pp 23–50Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • Rachida Barkallah
    • 1
  • Rym Taktak
    • 2
  • Noamen Guermazi
    • 2
    • 3
  • Fahmi Zaïri
    • 4
  • Jamel Bouaziz
    • 1
  • Fahed Zaïri
    • 5
  1. 1.Laboratory of Industrial Chemistry (LCI)National School of Engineers of Sfax (ENIS)SfaxTunisia
  2. 2.Laboratory of Materials Engineering and Environment (LGME)National School of Engineers of Sfax (ENIS)SfaxTunisia
  3. 3.Higher Institute of Applied Science and Technology of Kasserine (ISSAT-Ks)KasserineTunisia
  4. 4.Univ. Lille, FRE 3723 - LML - Lille Mechanics LaboratoryLilleFrance
  5. 5.CHRU Lille, Department of NeurosurgeryRoger Salengro HospitalLilleFrance

Personalised recommendations